Approximation by Urysohn Type Meyer-König and Zeller Operators to Urysohn Integral Operators

被引:0
作者
Harun Karsli
机构
[1] Abant Izzet Baysal University,Department of Mathematics, Faculty of Science and Arts
来源
Results in Mathematics | 2017年 / 72卷
关键词
Urysohn integral operators; Urysohn type Meyer-König and Zeller operators; approximation; 41A25; 41A35;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this study is generalization and extension of the theory of interpolation of functions to functionals and operators. We investigate the convergence problem for linear positive operators that approximate the Urysohn type operator in some functional spaces. One of the main difference between the present work and convergence to a function lies in the use of the Urysohn type operator values instead of the sampling values of a function. From the definitions of the Urysohn type operators, Heaviside and Dirac Delta function, the current study can be also consider as convergence of a kind of nonlinear form of the classical linear positive operators to a function.
引用
收藏
页码:1571 / 1583
页数:12
相关论文
共 14 条
[1]  
Meyer-Konig W(1960)Bernsteinsche Potenzreihen Stud. Math. 19 89-94
[2]  
Zeller K(1984)The second moment for the Meyer-König and Zeller operators J. Approx. Theory 40 261-273
[3]  
Alkemade JAH(1995)The moments for the Meyer König and Zeller operators J. Approx. Theory 82 352-361
[4]  
Abel U(2007)The moments for the Meyer König and Zeller operators Appl. Math. Lett. 20 719-722
[5]  
Guo S(1978)A global approximation theorem for the Meyer König Zeller operators Math. Z. 160 195-206
[6]  
Qi Q(1923)Sur une classe d’equations integrales non lineaires Mat. Sb. 31 236-255
[7]  
Becker M(1924)On a type of nonlinear integral equation Mat. Sb. 31 236-355
[8]  
Nessel RJ(1988)Interpolation method for the solution ofidenti cation problems for a functional system described by the Urysohn operator Dokl. Akad. Nauk SSSR 300 1332-1336
[9]  
Urysohn P(2012)Approximation of the Urysohn operator by operator polynomials of Stancu type Ukr. Math. J. 64 356-386
[10]  
Urysohn P(undefined)undefined undefined undefined undefined-undefined