Optimization Over the Boolean Hypercube Via Sums of Nonnegative Circuit Polynomials

被引:0
作者
Mareike Dressler
Adam Kurpisz
Timo de Wolff
机构
[1] University of California,Department of Mathematics
[2] San Diego,Department of Mathematics
[3] ETH Zürich,Institut für Analysis und Algebra, AG Algebra
[4] Technische Universität Braunschweig,undefined
来源
Foundations of Computational Mathematics | 2022年 / 22卷
关键词
Certificate; Hypercube optimization; Nonnegativity; Sum of nonnegative circuit polynomials; Sum of squares; 14P10; 68Q25; 90C09;
D O I
暂无
中图分类号
学科分类号
摘要
Various key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most n+d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+d$$\end{document}. Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most nO(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{O(d)}$$\end{document} nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.
引用
收藏
页码:365 / 387
页数:22
相关论文
共 35 条
[1]  
Arora S(2009)Expander flows, geometric embeddings and graph partitioning J. ACM 56 5:1-5:37
[2]  
Rao S(2014)Sum-of-squares proofs and the quest toward optimal algorithms Electronic Colloquium on Computational Complexity (ECCC) 21 59-380
[3]  
Vazirani U. V.(2006)There are significantly more nonegative polynomials than sums of squares Israel Journal of Mathematics 153 355-32
[4]  
Barak B(2017)Relative entropy optimization and its applications Math. Program. 161 1-94
[5]  
Steurer D(2007)Computation of the Lasserre ranks of some polytopes Math. Oper. Res. 32 88-892
[6]  
Blekherman G(2002)Approximation of the stability number of a graph via copositive programming SIAM J. Optim. 12 875-555
[7]  
Chandrasekaran V(2017)A Positivstellensatz for Sums of Nonnegative Circuit Polynomials SIAM J. Appl. Algebra Geom. 1 536-1145
[8]  
Shah P(1995)Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming J. Assoc. Comput. Mach. 42 1115-154
[9]  
Cheung KKH(2001)Complexity of positivstellensatz proofs for the knapsack Comput. Complexity 10 139-160
[10]  
de Klerk E(2001)Complexity of null-and positivstellensatz proofs Ann. Pure App. Logic 113 153-350