Existence and Boundary Behavior of Positive Solutions for a Semilinear Fractional Differential Equation

被引:0
作者
Habib Mâagli
Majda Chaieb
Abdelwaheb Dhifli
Samia Zermani
机构
[1] King Abdulaziz University,Department of Mathematics, College of Sciences and Arts
[2] Campus Universitaire,Département de Mathématiques, Faculté des Sciences de Tunis
来源
Mediterranean Journal of Mathematics | 2015年 / 12卷
关键词
Fractional differential equation; Positive solution; Schauder fixed-point theorem; 26A33; 31B25; 34A12; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following semilinear fractional initial value problem Dαu(x)=a(x)uσ(x),x∈(0,1)andlimx⟶0+x1-αu(x)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D^{\alpha} u(x) = a(x)u^{\sigma} (x), x\in (0, 1) \quad {\rm and} \quad \lim\limits_{x \longrightarrow0^{+}}x^{1 - \alpha} u(x) = 0,$$\end{document}where 0<α<1,σ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${0 < \alpha < 1, \sigma < 1}$$\end{document} and a is a positive measurable function on (0, 1). We establish the existence and the uniqueness of a positive solution in the space of weighted continuous functions. We also give the boundary behavior of such solution.
引用
收藏
页码:1265 / 1285
页数:20
相关论文
共 33 条
[11]  
Furati K.M.(1994)A class of analytic functions defined by fractional derivation J. Math. Anal. Appl. 186 504-513
[12]  
Kassim M.D.(1995)Relaxation in filled polymers: a fractional calculus approach J. Chem. Phys. 103 7180-7186
[13]  
Tatar N.-e.(1938)Existence theorems for solutions of differential equations of non-integral order Bull. Am. Math. Soc. 44 100-107
[14]  
Hilfer R.(2002)Geometric and physical interpretation of fractional integration and fractional differentiation Fract. Calc. Appl. Anal. 5 367-386
[15]  
Koeller R.C.(2000)The existence of a positive solution for a nonlinear fractional differential equation J. Math. Anal. Appl. 252 804-812
[16]  
Kou C.(2009)Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives Nonlinear. Anal. 71 2087-2093
[17]  
Zhou H.(undefined)undefined undefined undefined undefined-undefined
[18]  
Yan Y.(undefined)undefined undefined undefined undefined-undefined
[19]  
Kumar P.(undefined)undefined undefined undefined undefined-undefined
[20]  
Agarwal O.P.(undefined)undefined undefined undefined undefined-undefined