Sharp Estimate for the Critical Parameters of SU(3) Toda System with Arbitrary Singularities, I

被引:0
作者
Chang-Shou Lin
Wen Yang
机构
[1] National Taiwan University,Department of Mathematics, Taida Institute of Mathematical Sciences
[2] Chinese Academy of Sciences,Wuhan Institute of Physics and Mathematics
[3] Chinese Academy of Sciences,Innovation Academy for Precision Measurement Science and Technology
来源
Vietnam Journal of Mathematics | 2021年 / 49卷
关键词
(3)-Toda system; Conical singularity; Critical parameter; A priori estimate; Blowup solutions; 35J60; 35J55;
D O I
暂无
中图分类号
学科分类号
摘要
To obtain the a priori estimate of Toda system, the first step is to determine all the possible local masses of blow up solutions. In this paper we study this problem and improve the main results in (Anal. PDE 8, 807–837, 2015). Our method is based on a recent work by Eremenko–Gabrielov–Tarasov (Illinois J. Math. 58, 739–745, 2014).
引用
收藏
页码:363 / 379
页数:16
相关论文
共 75 条
  • [1] Battaglia L(2017)B2 and G2 Toda systems on compact surfaces: A variational approach J. Math. Phys. 58 011506-1910
  • [2] Battaglia L(2018)A unified approach of blow-up phenomena for two-dimensional singular Liouville systems Rev. Mat. Iberoam. 34 1867-897
  • [3] Pistoia A(1934)Magnetically self-focusing streams Phys. Rev. 45 890-1253
  • [4] Bennett WH(1991)Uniform estimates and blow-up behavior for solutions of −Δu = V (x)eu in two dimensions Commun. Partial Differ. Equ. 16 1223-274
  • [5] Brezis H(2015)Mean field equations, hyperelliptic curves, and modular forms: I Camb. J. Math. 3 127-771
  • [6] Merle F(2002)Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces Commun. Pure Appl. Math. 55 728-1727
  • [7] Chai C-L(2003)Topological degree for a mean field equation on Riemann surfaces Commun. Pure Appl. Math. 56 1667-1272
  • [8] Lin C-S(2010)Mean field equations of Liouville type with singular data: Sharper estimates Discret. Contin. Dyn. Syst. 28 1237-947
  • [9] Wang C-L(2015)Mean field equation of Liouville type with singular data: Topological degree Commun. Pure Appl. Math. 68 887-241
  • [10] Chen C-C(2018)Green function, Painlevé equation, and Eisenstein series of weight one J. Differ. Geom. 108 185-32