Estimates for powers of sub-Laplacian on the non-isotropic Heisenberg group

被引:15
作者
Der-Chen Chang
Jingzhi Tie
机构
[1] Georgetown University,Department of Mathematics
[2] University of Georgia,Department of Mathematics
关键词
Fundamental Solution; Hardy Space; Heat Kernel; Heisenberg Group; Convolution Operator;
D O I
10.1007/BF02921990
中图分类号
学科分类号
摘要
Assume that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{L}}_\alpha = - \frac{1}{2}\sum\nolimits_{j = 1}^n {(Z_j \bar Z_j + \bar Z_j Z_j ) + i\alpha T} $$ \end{document}is the sub-Laplacian on the nonisotropic Heisenberg groupHn;Zj,Zjfor j = 1, 2, …,n andTare the basis of the Lie algebra hn.We apply the Laguerre calculus to obtain the explicit kernel for the fundamental solution of the powers of Lαand the heat kernel exp{−sLα}.Estimates for this kernel in various function spaces can be deduced easily.
引用
收藏
相关论文
共 29 条
[1]  
Beals R.(1997)Complex Hamillonian mechanics and parametrices for subelliptic Laplacians Bull. Sci. Math. 121 1-36
[2]  
Gaveau B.(1986)The Laguerre calculus on the Heisenberg group: II Bull. Sci. Math. 110 225-288
[3]  
Greiner P.C.(1993)Fundamental solutions for the powers of the Heisenberg sub-Laplacian Illinois J. Math. 37 455-476
[4]  
Beals R.(1990)Estimates for the singular integral operators with mixed type homogeneities in Hardy classes Math. Ann. 287 303-322
[5]  
Gaveau B.(1993) theory on a smooth domain in J. Funct. Anal. 114 286-347
[6]  
Greiner P.C.(1997) and elliptic boundary value problems J. d’Analyse Math. 71 315-347
[7]  
Vauthier J.(1984)Estimates for the spectrum projection operators of the sub-Laplacian on the Heisenberg group Duke Math. J. 51 547-598
[8]  
Benson C.(1974)Singular integral characterizations of Hardy spaces on homogeneous groups Comm. Pure Appl. Math. 27 429-522
[9]  
Dolley A.H.(1977)Estimates for the Acta Math. 139 95-153
[10]  
Ratcliff G.(1977) and analysis on the Heisenberg group Proc. Nat. Acad. Sci. USA 74 1328-1331