A note on double lacunary statistical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-convergence of fuzzy numbers

被引:0
|
作者
Ekrem Savaş
机构
[1] Istanbul Commerce University,Department of Mathematics
关键词
Double lacunary sequence; P-convergent; Fuzzy numbers; Invariant mean;
D O I
10.1007/s00500-011-0757-5
中图分类号
学科分类号
摘要
Quite recently, Savaş (Appl Math Lett 21:134–141, 2008), defined the lacunary statistical analogue for double sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{X_{k,l}\}$$\end{document} of fuzzy numbers as follows: a double sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\{X_{k,l}\}$$\end{document} is said to be lacunary P-statistically convergent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_{0}$$\end{document} provided that for each \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ P-\lim_{r,s}\frac{1}{h_{r,s}}\left | \{(k,l)\in I_{r,s}: d(X_{k,l },X_0)\geq \epsilon\}\right|= 0. $$\end{document}In this paper we introduce and study double lacunary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-statistical convergence for sequence of fuzzy numbers and also we get some inclusion theorems.
引用
收藏
页码:591 / 595
页数:4
相关论文
共 9 条