Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation

被引:3
作者
Xing Lü
Shou-Ting Chen
Wen-Xiu Ma
机构
[1] Beijing Jiao Tong University,Department of Mathematics
[2] Xuzhou Institute of Technology,School of Mathematics and Physical Science
[3] University of South Florida,Department of Mathematics and Statistics
[4] North-West University,Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling
来源
Nonlinear Dynamics | 2016年 / 86卷
关键词
Lump solution; Generalized bilinear operator; Generalized Kadomtsev–Petviashvili–Boussinesq equation; 35A25; 37K10;
D O I
暂无
中图分类号
学科分类号
摘要
Associated with the prime number p=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=3$$\end{document}, a combined model of generalized bilinear Kadomtsev–Petviashvili and Boussinesq equation (gbKPB for short) in terms of the function f is proposed, which involves four arbitrary coefficients. To guarantee the existence of lump solutions, a constraint among these four coefficients is presented firstly, and then, the lump solutions are constructed and classified via searching for positive quadratic function solutions to the gbKPB equation. Different conditions posed on lump parameters are investigated to keep the analyticity and rational localization of the resulting solutions. Finally, 3-dimensional plots, density plots and 2-dimensional curves with particular choices of the involved parameters are given to show the profile characteristics of the presented lump solutions for the potential function u=2(lnf)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=2(\mathrm{{ln}}f)_x$$\end{document}.
引用
收藏
页码:523 / 534
页数:11
相关论文
共 70 条
  • [11] Lü X(2016)Integrability and exact solutions of a two-component Korteweg-de Vries system Appl. Math. Lett. 51 60-undefined
  • [12] Ma WX(2016)Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media Nonlinear Dyn. 83 2453-undefined
  • [13] Yu J(1979)Two-dimensional lumps in nonlinear dispersive systems J. Math. Phys. 20 1496-undefined
  • [14] Khalique CM(1990)Lump solutions of the BKP equation Phys. Lett. A 147 472-undefined
  • [15] Lü X(1981)The lump solutions and the Bäklund transformation for the three-dimensional three-wave resonant interaction J. Math. Phys. 22 1176-undefined
  • [16] Ma WX(1997)Dromion and lump solutions of the Ishimori-I equation Prog. Theor. Phys. 98 1013-undefined
  • [17] Chen ST(2015)Lump solutions to the Kadomtsev–Petviashvili equation Phys. Lett. A 379 1975-undefined
  • [18] Khalique CM(2016)Lump solutions to dimensionally reduced p-gKP and p-gBKP equations Nonlinear Dyn. 84 923-undefined
  • [19] Razborova P(2011)Generalized bilinear differential equations Stud. Nonlinear Sci. 2 140-undefined
  • [20] Kara AH(2013)Bilinear equations, Bell polynomials and linear superposition principle J. Phys. Conf. Ser. 411 012021-undefined