Some Hyperbolic Conservation Laws on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {R}} ^{n}$$\end{document}

被引:0
作者
Nabila Bedida
Nadji Hermas
机构
[1] Université Frères Mentouri,Département de Mathématiques, Faculté des sciences exactes
[2] Université Ziane Achour,Département de Mathématiques et d’Informatique
关键词
Maximum solutions; Quasi-linear hyperbolic systems; Hyperbolic laws of conservation; 35L40; 35L45; 35L50; 35L60; 35L65; 58J45;
D O I
10.1007/s00009-020-01638-9
中图分类号
学科分类号
摘要
In this paper, we prove the existence and the uniqueness of maximum classical solutions in the temporal variable for some quasi-linear hyperbolic systems.
引用
收藏
相关论文
共 12 条
[1]  
Anikonov DS(2013)Differential properties of a generalized solution to a hyperbolic system of first-order differential equations J. Appl. Ind. Math. 7 313-325
[2]  
Kazantsev SG(2005)Vanishing viscosity solutions of nonlinear hyperbolic systems Ann. Math. 161 223-342
[3]  
Konovalova DS(1948)A mathematical model illustrating the theory of turbulence Adv. Appl. Mech. 1 171-199
[4]  
Bianchini S(2012)N-Waves in Hyperbolic Balance Laws J. Hyperbolic Differ. Equ. 9 339-354
[5]  
Bressan A(2014)Flot d’un système hyperbolique, African Diaspora J. Math. 17 1-19
[6]  
Burgers J(2013)Fractional-hyperbolic systems Fract. Calc. Appl. Anal. 16 860-873
[7]  
Dafermos CM(1954)Weak solutions of nonlinear hyperbolic equations and their numerical computation CPAM 7 159-193
[8]  
Hermas N(1957)Hyperbolic systems of conservation laws Commun. Pure Appl. Math. 10 537-566
[9]  
Kochubei AN(1964)Development of singularities of solutions of nonlinear hyperbolic partial differential equations J. Math. Phys. 5 611-613
[10]  
Lax PD(undefined)undefined undefined undefined undefined-undefined