Braided Tensor Categories and Extensions of Vertex Operator Algebras

被引:0
|
作者
Yi-Zhi Huang
Alexander Kirillov
James Lepowsky
机构
[1] Rutgers University,Department of Mathematics
[2] State University of New York at Stony Brook,Department of Mathematics
来源
Communications in Mathematical Physics | 2015年 / 337卷
关键词
Vertex Operator; Module Category; Fusion Rule; Vertex Operator Algebra; Tensor Category;
D O I
暂无
中图分类号
学科分类号
摘要
Let V be a vertex operator algebra satisfying suitable conditions such that in particular its module category has a natural vertex tensor category structure, and consequently, a natural braided tensor category structure. We prove that the notions of extension (i.e., enlargement) of V and of commutative associative algebra, with uniqueness of unit and with trivial twist, in the braided tensor category of V-modules are equivalent.
引用
收藏
页码:1143 / 1159
页数:16
相关论文
共 50 条
  • [1] Representations of vertex operator algebras and braided finite tensor categories
    Huang, Yi-Zhi
    VERTEX OPERATOR ALGEBRAS AND RELATED AREAS, 2009, 497 : 97 - 111
  • [2] Mirror Extensions of Vertex Operator Algebras
    Chongying Dong
    Xiangyu Jiao
    Feng Xu
    Communications in Mathematical Physics, 2014, 329 : 263 - 294
  • [3] Certain Extensions¶of Vertex Operator Algebras of Affine Type
    Haisheng Li
    Communications in Mathematical Physics, 2001, 217 : 653 - 696
  • [4] and as Vertex Operator Extensions¶of Dual Affine Algebras
    P. Bowcock
    B. L. Feigin
    A. M. Semikhatov
    A. Taormina
    Communications in Mathematical Physics, 2000, 214 : 495 - 545
  • [5] Conformal field theory, tensor categories and operator algebras
    Kawahigashi, Yasuyuki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (30)
  • [6] Lifts of automorphisms of vertex operator algebras in simple current extensions
    Hiroki Shimakura
    Mathematische Zeitschrift, 2007, 256 : 491 - 508
  • [7] Some exceptional extensions of Virasoro vertex operator algebras
    Ai, Chunrui
    Dong, Chongying
    Lin, Xingjun
    JOURNAL OF ALGEBRA, 2020, 546 : 370 - 389
  • [8] Open-String Vertex Algebras, Tensor Categories and Operads
    Yi-Zhi Huang
    Liang Kong
    Communications in Mathematical Physics, 2004, 250 : 433 - 471
  • [9] A Rigidity Result for Extensions of Braided Tensor C*–Categories Derived from Compact Matrix Quantum Groups
    Claudia Pinzari
    John E. Roberts
    Communications in Mathematical Physics, 2011, 306 : 647 - 662
  • [10] Homotopy invariants of braided commutative algebras and the Deligne conjecture for finite tensor categories
    Schweigert, Christoph
    Woike, Lukas
    ADVANCES IN MATHEMATICS, 2023, 422