On the contraction-proximal point algorithms with multi-parameters

被引:0
|
作者
Fenghui Wang
Huanhuan Cui
机构
[1] Luoyang Normal University,Department of Mathematics
来源
Journal of Global Optimization | 2012年 / 54卷
关键词
Maximal monotone operator; Proximal point algorithm; Firmly nonexpansive operator; 47J20; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the contraction-proximal point algorithm: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{n+1}=\alpha_nu+\lambda_nx_n+\gamma_nJ_{\beta_n}x_n,}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J_{\beta_n}}$$\end{document} denotes the resolvent of a monotone operator A. Under the assumption that limn αn = 0, ∑n αn = ∞, lim infn βn > 0, and lim infn γn > 0, we prove the strong convergence of the iterates as well as its inexact version. As a result we improve and recover some recent results by Boikanyo and Morosanu.
引用
收藏
页码:485 / 491
页数:6
相关论文
共 50 条
  • [41] Approximate Customized Proximal Point Algorithms for Separable Convex Optimization
    Hong-Mei Chen
    Xing-Ju Cai
    Ling-Ling Xu
    Journal of the Operations Research Society of China, 2023, 11 : 383 - 408
  • [42] A class of nonlinear proximal point algorithms for variational inequality problems
    He, Hongjin
    Cai, Xingju
    Han, Deren
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1385 - 1401
  • [43] Comparison of two proximal point algorithms for monotone variational inequalities
    Li, Min
    Xu, Minghua
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (10-11) : 1543 - 1554
  • [44] Proximal point algorithms involving fixed point iteration for nonexpansive mappings in CAT(κ) spaces
    Pakkaranang, Nuttapol
    Kumam, Poom
    Cholamjiak, Prasit
    Suparatulatorn, Raweerote
    Chaipunya, Parin
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 229 - 237
  • [45] Dual-primal proximal point algorithms for extended convex programming
    Li, Min
    Jiang, Zhikai
    Zhou, Zhangjin
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (07) : 1473 - 1495
  • [46] PROXIMAL POINT ALGORITHMS FOR NONCONVEX-NONCONCAVE MINIMAX OPTIMIZATION PROBLEMS
    Li, Xiao-bing
    Jiang, Yuan-xin
    Yao, Bin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (08) : 2007 - 2021
  • [47] Inexact versions of Proximal Point and augmented Lagrangian algorithms in Banach spaces
    Iusem, A
    Otero, RG
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2001, 22 (5-6) : 609 - 640
  • [48] A class of customized proximal point algorithms for linearly constrained convex optimization
    Feng Ma
    Mingfang Ni
    Computational and Applied Mathematics, 2018, 37 : 896 - 911
  • [49] Asymptotic convergence analysis of some inexact proximal point algorithms for minimization
    Zhu, CY
    SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (03) : 626 - 637
  • [50] A class of customized proximal point algorithms for linearly constrained convex optimization
    Ma, Feng
    Ni, Mingfang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02) : 896 - 911