On the contraction-proximal point algorithms with multi-parameters

被引:0
|
作者
Fenghui Wang
Huanhuan Cui
机构
[1] Luoyang Normal University,Department of Mathematics
来源
Journal of Global Optimization | 2012年 / 54卷
关键词
Maximal monotone operator; Proximal point algorithm; Firmly nonexpansive operator; 47J20; 49J40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the contraction-proximal point algorithm: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_{n+1}=\alpha_nu+\lambda_nx_n+\gamma_nJ_{\beta_n}x_n,}$$\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${J_{\beta_n}}$$\end{document} denotes the resolvent of a monotone operator A. Under the assumption that limn αn = 0, ∑n αn = ∞, lim infn βn > 0, and lim infn γn > 0, we prove the strong convergence of the iterates as well as its inexact version. As a result we improve and recover some recent results by Boikanyo and Morosanu.
引用
收藏
页码:485 / 491
页数:6
相关论文
共 50 条