Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity

被引:1
作者
Fuliang Wang
Mingqi Xiang
机构
[1] Civil Aviation University of China,College of Science
来源
Analysis and Mathematical Physics | 2019年 / 9卷
关键词
Fractional Choquard equation; Fractional ; -Laplacian; Variational methods; Critical exponent; 49A50; 26A33; 35J60; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate the multiplicity of solutions to the following nonlocal fractional Choquard–Kirchhoff type equation involving critical exponent, a+b[u]s,pp(-Δ)psu=∫RN|u(y)|pμ,s∗|x-y|μdy|u|pμ,s∗-2u+λh(x)|u|q-2uinRN,[u]s,p=∫RN∫RN|u(x)-u(y)|p|x-y|N+spdxdy1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\left( a+b[u]_{s,p}^p\right) (-\Delta )_p^su=\int _{\mathbb {R}^N}\frac{|u(y)|^{p_{\mu ,s}^*}}{|x-y|^{\mu }}dy|u|^{p_{\mu ,s}^*-2}u +\lambda h(x)|u|^{q-2}u\quad&\text{ in } \,\,\mathbb {R}^N,\\&[u]_{s,p}=\left( \int _{\mathbb {R}^{N}}\int _{\mathbb {R}^N}\frac{|u(x)- u(y)|^p}{|x-y|^{N+sp}}dxdy\right) ^{1/p} \end{aligned}$$\end{document}where a≥0,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0, b>0$$\end{document}, 0<s<min{1,N/2p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<\min \{1,N/2p\}$$\end{document}, 2sp≤μ<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2sp\le \mu <N$$\end{document}, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^s$$\end{document} is the fractional p-Laplace operator, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, pμ,s∗=(N-μ2)pN-sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\mu ,s}^*=\frac{(N-\frac{\mu }{2})p}{N-sp}$$\end{document} is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, 1<q<ps∗=NpN-sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p_s^*=\frac{Np}{N-sp}$$\end{document} and h∈Lps∗ps∗-q(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in L^{\frac{p_s^*}{p_s^*-q}}(\mathbb {R}^N)$$\end{document}. Under some suitable assumptions, we obtain the multiplicity of nontrivial solutions by using variational methods. In particular, we get the existence of infinitely many nontrivial solutions for the degenerate Kirchhoff case by using Krasnoselskii’s genus theory.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 97 条
[1]  
Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[2]  
Rabinowitz P(2004)Lévy processes—from probability to finance quantum groups Not. Am. Math. Soc. 51 1336-1347
[3]  
Applebaum D(2013)Elliptic problems involving the fractional Laplacian in J. Differ. Equ. 255 2340-2362
[4]  
Autuori G(2015)Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity Nonlinear Anal. 125 699-714
[5]  
Pucci P(2012)Nonlocal diffusions, drifts and games Nonlinear Part. Differ. Equ. Abel Symp. 7 37-52
[6]  
Autuori G(2007)An extension problem related to the fractional Laplacian Commun. Part. Differ. Equ. 32 1245-1260
[7]  
Fiscella A(2016)Existence theorems for entire solutions of stationary Kirchhoff fractional Ann. Mat. Pura Appl. 195 2099-2129
[8]  
Pucci P(2016)-Laplacian equations Mediterr. J. Math. 13 5077-5091
[9]  
Caffarelli L(1972)Existence, nonexistence, and multiple results for the fractional Indiana Univ. Math. J. 22 65-74
[10]  
Caffarelli L(2009)-Kirchhoff-type equation in Appl. Math. Lett. 22 819-822