Multiplicity of solutions for a class of fractional Choquard–Kirchhoff equations involving critical nonlinearity

被引:0
|
作者
Fuliang Wang
Mingqi Xiang
机构
[1] Civil Aviation University of China,College of Science
来源
Analysis and Mathematical Physics | 2019年 / 9卷
关键词
Fractional Choquard equation; Fractional ; -Laplacian; Variational methods; Critical exponent; 49A50; 26A33; 35J60; 47G20;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to investigate the multiplicity of solutions to the following nonlocal fractional Choquard–Kirchhoff type equation involving critical exponent, a+b[u]s,pp(-Δ)psu=∫RN|u(y)|pμ,s∗|x-y|μdy|u|pμ,s∗-2u+λh(x)|u|q-2uinRN,[u]s,p=∫RN∫RN|u(x)-u(y)|p|x-y|N+spdxdy1/p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&\left( a+b[u]_{s,p}^p\right) (-\Delta )_p^su=\int _{\mathbb {R}^N}\frac{|u(y)|^{p_{\mu ,s}^*}}{|x-y|^{\mu }}dy|u|^{p_{\mu ,s}^*-2}u +\lambda h(x)|u|^{q-2}u\quad&\text{ in } \,\,\mathbb {R}^N,\\&[u]_{s,p}=\left( \int _{\mathbb {R}^{N}}\int _{\mathbb {R}^N}\frac{|u(x)- u(y)|^p}{|x-y|^{N+sp}}dxdy\right) ^{1/p} \end{aligned}$$\end{document}where a≥0,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ge 0, b>0$$\end{document}, 0<s<min{1,N/2p}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<\min \{1,N/2p\}$$\end{document}, 2sp≤μ<N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2sp\le \mu <N$$\end{document}, (-Δ)ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )_p^s$$\end{document} is the fractional p-Laplace operator, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, pμ,s∗=(N-μ2)pN-sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\mu ,s}^*=\frac{(N-\frac{\mu }{2})p}{N-sp}$$\end{document} is the critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality, 1<q<ps∗=NpN-sp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p_s^*=\frac{Np}{N-sp}$$\end{document} and h∈Lps∗ps∗-q(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in L^{\frac{p_s^*}{p_s^*-q}}(\mathbb {R}^N)$$\end{document}. Under some suitable assumptions, we obtain the multiplicity of nontrivial solutions by using variational methods. In particular, we get the existence of infinitely many nontrivial solutions for the degenerate Kirchhoff case by using Krasnoselskii’s genus theory.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 50 条
  • [1] Multiplicity of solutions for a class of fractional Choquard-Kirchhoff equations involving critical nonlinearity
    Wang, Fuliang
    Xiang, Mingqi
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 1 - 16
  • [2] MULTIPLE SOLUTIONS OF FRACTIONAL KIRCHHOFF EQUATIONS INVOLVING A CRITICAL NONLINEARITY
    Jin, Hua
    Liu, Wenbin
    Zhang, Jianjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 533 - 545
  • [3] FRACTIONAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING UPPER CRITICAL EXPONENT AND GENERAL NONLINEARITY
    Yu, Xue
    Sang, Yanbin
    Han, Zhiling
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2023, 7 (01): : 67 - 86
  • [4] Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian
    Goyal, Sarika
    Mukherjee, Tuhina
    ACTA APPLICANDAE MATHEMATICAE, 2021, 172 (01)
  • [5] Kirchhoff Equations with Choquard Exponential Type Nonlinearity Involving the Fractional Laplacian
    Sarika Goyal
    Tuhina Mukherjee
    Acta Applicandae Mathematicae, 2021, 172
  • [6] EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR CRITICAL KIRCHHOFF-CHOQUARD EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN ON THE HEISENBERG GROUP
    Bai, Shujie
    Song, Yueqiang
    Repovs, Dusan D.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2024, 8 (01): : 143 - 166
  • [7] MULTIPLICITY OF POSITIVE SOLUTIONS FOR FRACTIONAL LAPLACIAN EQUATIONS INVOLVING CRITICAL NONLINEARITY
    Zhang, Jinguo
    Liu, Xiaochun
    Mao, Hongying
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 53 (01) : 151 - 182
  • [8] Multiplicity and Concentration Behavior of Solutions to a Class of Fractional Kirchhoff Equation Involving Exponential Nonlinearity
    Song, Yueqiang
    Sun, Xueqi
    Liang, Sihua
    Nguyen, Van Thin
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [9] Existence and multiplicity of normalized solutions for a class of fractional Choquard equations
    Gongbao Li
    Xiao Luo
    ScienceChina(Mathematics), 2020, 63 (03) : 539 - 558
  • [10] Nodal solutions for Kirchhoff equations with Choquard nonlinearity
    Wenjing Chen
    Ting Zhou
    Journal of Fixed Point Theory and Applications, 2022, 24