Several identities in the Catalan triangle

被引:0
|
作者
Zhizheng Zhang
Bijun Pang
机构
[1] Luoyang Teachers’ College,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2010年 / 41卷
关键词
Catalan triangle; Catalan number; sum; Fibonacci matrix; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) $$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$\end{document}
引用
收藏
页码:363 / 378
页数:15
相关论文
共 50 条
  • [31] CATALAN FRAGILE WORDS
    D'Angeli, Daniele
    Donno, Alfredo
    Rodaro, Emanuele
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2020, 9 (02) : 69 - 80
  • [32] Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers
    Qi, Feng
    Guo, Bai-Ni
    COGENT MATHEMATICS, 2016, 3
  • [33] Schur-convexity of the Catalan-Qi function related to the Catalan numbers
    Qi, Feng
    Shi, Xiao-Ting
    Mahmoud, Mansour
    Liu, Fang-Fang
    TBILISI MATHEMATICAL JOURNAL, 2016, 9 (02) : 141 - 150
  • [34] Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles
    Barry, Paul
    JOURNAL OF INTEGER SEQUENCES, 2019, 22 (05)
  • [35] AN ALTERNATIVE DECOMPOSITION OF CATALAN NUMBER
    Krtolica, Predrag V.
    Stanimirovic, Predrag S.
    Stojanovic, Igor
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2018, 33 (01): : 63 - 77
  • [36] Alternating Convolutions of Catalan Numbers
    Wenchang Chu
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 95 - 105
  • [37] Motzkin and Catalan Tunnel Polynomials
    Barnabei, Marilena
    Bonetti, Flavio
    Castronuovo, Niccole
    Silimbani, Matteo
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (08)
  • [38] RATIONAL FUNCTIONS AND CATALAN NUMBERS
    Kostov, Vladimir P.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2012, 65 (02): : 147 - 152
  • [39] Action Graphs and Catalan Numbers
    Alvarez, Gerardo
    Bergner, Julia E.
    Lopez, Ruben
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (07)
  • [40] Alternating Convolutions of Catalan Numbers
    Chu, Wenchang
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 95 - 105