Several identities in the Catalan triangle

被引:0
|
作者
Zhizheng Zhang
Bijun Pang
机构
[1] Luoyang Teachers’ College,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2010年 / 41卷
关键词
Catalan triangle; Catalan number; sum; Fibonacci matrix; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) $$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$\end{document}
引用
收藏
页码:363 / 378
页数:15
相关论文
共 50 条
  • [21] Some combinatorial identities containing central binomial coefficients or Catalan numbers*
    Qi, Feng
    Niu, Da-Wei
    Lim, Dongkyu
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [22] Several Identities for Inverse-Conjugate Compositions
    Yuhong GUO
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 441 - 448
  • [23] Parametric Catalan numbers and Catalan triangles
    He, Tian-Xiao
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (03) : 1467 - 1484
  • [24] On One-Parameter Catalan Arrays
    Agapito, Jose
    Mestre, Angela
    Torres, Maria M.
    Petrullo, Pasquale
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)
  • [25] Catalan Numbers
    Federico Ardila
    The Mathematical Intelligencer, 2016, 38 : 4 - 5
  • [26] Catalan Numbers
    Ardila, Federico
    MATHEMATICAL INTELLIGENCER, 2016, 38 (02) : 4 - 5
  • [27] A Unified Generalization of the Catalan, Fuss, and Fuss-Catalan Numbers
    Qi, Feng
    Shi, Xiao-Ting
    Cerone, Pietro
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2019, 24 (02)
  • [28] Some properties of the Catalan-Qi function related to the Catalan numbers
    Qi, Feng
    Mahmoud, Mansour
    Shi, Xiao-Ting
    Liu, Fang-Fang
    SPRINGERPLUS, 2016, 5
  • [29] A Generalization of the Catalan Numbers
    Kahkeshani, Reza
    JOURNAL OF INTEGER SEQUENCES, 2013, 16 (06)
  • [30] A generalization of Catalan numbers
    Vera-Lopez, A.
    Garcia-Sanchez, M. A.
    Basova, O.
    Vera-Lopez, F. J.
    DISCRETE MATHEMATICS, 2014, 332 : 23 - 39