Several identities in the Catalan triangle

被引:0
|
作者
Zhizheng Zhang
Bijun Pang
机构
[1] Luoyang Teachers’ College,Department of Mathematics
来源
Indian Journal of Pure and Applied Mathematics | 2010年 / 41卷
关键词
Catalan triangle; Catalan number; sum; Fibonacci matrix; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish several identities for the alternating sums in the Catalan triangle whose (n, p) entry is defined by Bn, p = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tfrac{p} {n}\left( {_{n - p}^{2n} } \right) $$\end{document}. Second, we show that the Catalan triangle matrix C can be factorized by C = FY = ZF, where F is the Fibonacci matrix. From these formulas, some interesting identities involving Bn, p and the Fibonacci numbers Fn are given. As special cases, some new relationships between the well-known Catalan numbers Cn and the Fibonacci numbers are obtained, for example: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ C_n = F_{n + 1} + \sum\limits_{k = 3}^n {\left\{ {1 - \frac{{(k + 1)(k5 - 6)}} {{4(2k - 1)(2k - 3)}}} \right\}C_k F_{n - k + 1} } , $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{gathered} \frac{{n - 1}} {{n + 2}}C_n = \frac{1} {2}F_n + F_{n - 2} \hfill \\ + \sum\limits_{k = 4}^n {\left\{ {1 - \frac{{(k + 2)(5k^2 - 16k + 9)}} {{4(k - 1)(2k - 1)(2k - 3)}}} \right\}\frac{{k - 1}} {{k + 2}}C_k F_{n - k + 1} } . \hfill \\ \end{gathered} $$\end{document}
引用
收藏
页码:363 / 378
页数:15
相关论文
共 50 条
  • [1] SEVERAL IDENTITIES IN THE CATALAN TRIANGLE
    Zhang, Zhizheng
    Pang, Bijun
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2010, 41 (02) : 363 - 378
  • [2] Several series identities involving the Catalan numbers
    Yin, Li
    Qi, Feng
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2018, 172 (03) : 466 - 474
  • [3] THE INVERSE OF A TRIANGULAR MATRIX AND SEVERAL IDENTITIES OF THE CATALAN NUMBERS
    Qi, Feng
    Zou, Qing
    Guo, Bai-Ni
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (02) : 518 - 541
  • [4] ANALOGUES OF SEVERAL IDENTITIES AND SUPERCONGRUENCES FOR THE CATALAN-QI NUMBERS
    Zou, Qing
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04) : 235 - +
  • [5] Total positivity of Catalan triangle
    Wang, Charles Zhao-Chen
    Wang, Yi
    DISCRETE MATHEMATICS, 2015, 338 (04) : 566 - 568
  • [6] NEW SUMS IDENTITIES IN WEIGHTED CATALAN TRIANGLE WITH THE POWERS OF GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Kilic, Emrah
    Yalciner, Aynur
    ARS COMBINATORIA, 2014, 115 : 391 - 400
  • [7] On a Surface Associated to the Catalan Triangle
    Jianu, Marilena
    Achimescu, Sever
    Daus, Leonard
    Mierlus-Mazilu, Ion
    Mihai, Adela
    Tudor, Daniel
    AXIOMS, 2022, 11 (12)
  • [8] Some new binomial sums related to the Catalan triangle
    Sun, Yidong
    Ma, Fei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01)
  • [9] Sums of powers of Catalan triangle numbers
    Miana, Pedro J.
    Ohtsuka, Hideyuki
    Romero, Natalia
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2388 - 2397
  • [10] Some Convolution Identities for Catalan Numbers
    Rakhimov, I
    Atan, Mohd K. A.
    Hadi, N. A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (04): : 771 - 782