Blow-up of solution for an integro-differential equation with arbitrary positive initial energy

被引:0
作者
Liu Jie
Liang Fei
机构
[1] Xi’an University of Science and Technology,Department of Mathematics
来源
Boundary Value Problems | / 2015卷
关键词
blow-up; arbitrary positive initial energy; integro-differential equation; 35L05; 35L55; 35L70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the integro-differential equation utt−M(∥∇u∥22)Δu+∫0tg(t−τ)Δu(τ)dτ+ut=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{tt}-M(\|\nabla u\|^{2}_{2})\Delta u+ \int_{0}^{t} g(t-\tau)\Delta u(\tau)\, d\tau+ u_{t}=f(u)$\end{document}, (x,t)∈Ω×(0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,t)\in\Omega\times(0,T)$\end{document}, with initial and Dirichlet boundary conditions. Under suitable assumptions on the functions g and the initial data, a blow-up result with arbitrary positive initial energy is established.
引用
收藏
相关论文
共 31 条
[1]  
Ball J(1977)Remarks on blow up and nonexistence theorems for nonlinear evolutions equations Q. J. Math. 28 473-486
[2]  
Haraux A(1988)Decay estimates for some semilinear damped hyperbolic problems Arch. Ration. Mech. Anal. 150 191-206
[3]  
Zuazua E(1978)The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type J. Sov. Math. 10 53-70
[4]  
Kalantarov VK(2001)Blow up in a nonlinearly damped wave equation Math. Nachr. 231 1-7
[5]  
Ladyzhenskaya OA(1975)Saddle points and instability on nonlinear hyperbolic equations Isr. J. Math. 22 273-303
[6]  
Messaoudi SA(1991)On some nonlinear wave equations II: global existence and energy decay of solutions J. Fac. Sci., Univ. Tokyo, Sect. IA, Math. 38 239-250
[7]  
Payne L(1995)A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms Differ. Integral Equ. 8 607-616
[8]  
Sattinger D(1997)On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation Math. Methods Appl. Sci. 20 151-177
[9]  
Hosoya M(1997)On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation J. Math. Anal. Appl. 216 321-342
[10]  
Yamada Y(2006)Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation Nonlinear Anal. 65 243-246