A Chung–Feller theorem for lattice paths with respect to cyclically shifting boundaries

被引:0
作者
Victor J. W. Guo
Xiao-Xin Wang
机构
[1] Huaiyin Normal University,School of Mathematical Sciences
[2] East China Normal University,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2019年 / 50卷
关键词
Chung–Feller theorem; Lattice paths; Piecewise linear boundary; Catalan numbers; Double ascent; 05A15; 05A10;
D O I
暂无
中图分类号
学科分类号
摘要
Irving and Rattan gave a formula for counting lattice paths dominated by a cyclically shifting piecewise linear boundary of varying slope. Their main result may be considered as a deep extension of well-known enumerative formulas concerning lattice paths from (0, 0) to (kn, n) lying under the line x=ky\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=ky$$\end{document} (e.g., the Dyck paths when k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document}). On the other hand, the classical Chung–Feller theorem tells us that the number of lattice paths from (0, 0) to (n, n) with exactly 2k steps above the line x=y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=y$$\end{document} is independent of k and is therefore the Catalan number 1n+12nn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{n+1}{2n\atopwithdelims ()n}$$\end{document}. In this paper, we study the number of lattice path boundary pairs (P,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P,\mathbf{a})$$\end{document} with k flaws, where P is a lattice path from (0, 0) to (n, m), a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{a}$$\end{document} is a weak m-part composition of n, and a flaw is a horizontal step of P above the boundary ∂a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathbf{a}$$\end{document}. We prove bijectively, for a given a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{a}$$\end{document}, that summing these numbers over all cyclic shifts of the boundary ∂a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \mathbf{a}$$\end{document} is equal to n+mm-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n+m\atopwithdelims ()m-1}$$\end{document}. That is, we generalize the Irving–Rattan formula to a Chung–Feller-type theorem. We also give a refinement of this result by taking the number of double ascents of lattice paths into account.
引用
收藏
页码:119 / 126
页数:7
相关论文
共 36 条
[1]  
Callan D(1995)Pair them up! A visual approach to the Chung–Feller theorem College Math. J. 26 196-198
[2]  
Chapman RJ(2009)Simple formulas for lattice paths avoiding certain periodic staircase boundaries J. Combin. Theory Ser. A 116 205-214
[3]  
Chow T(2008)The Chung–Feller theorem revisited Discrete Math. 308 1328-1329
[4]  
Khetan A(1949)On fluctuations in-coin tossing Proc. Natl. Acad. Sci. USA 35 605-608
[5]  
Moulton DP(2005)Refined Chung–Feller theorems for lattice paths J. Combin. Theory Ser. A 112 143-162
[6]  
Waters RJ(2002)Taylor expansions for Catalan and Motzkin numbers Adv. Appl. Math. 29 345-357
[7]  
Chen Y-M(2003)Maintaining the spirit of the reflection principle when the boundary has arbitrary integer slope J. Combin. Theory Ser. A 104 317-326
[8]  
Chung KL(2010)Cyclic permutations of sequences and uniform partitions Electron. J. Combin. 17 R117-514
[9]  
Feller W(2009)The number of lattice paths below a cyclically shifting boundary J. Combin. Theory Ser. A 116 499-342
[10]  
Eu S-P(1988)Random walks on College Math. J. 19 330-332