On some properties and an application of the logarithmic barrier method

被引:0
作者
Regina S. Burachik
L. M. Graña Drummond
Susana Scheimberg
机构
[1] University of South Australia,School of Mathematics and Statistics
[2] FACC–UFRJ,Instituto de Matematica, IM, UFRJ
[3] Programa de Engenharia de Sistemas de Computação,undefined
[4] COPPE-PESC,undefined
来源
Mathematical Programming | 2008年 / 111卷
关键词
Logarithmic barrier; Central path; Nonsmooth convex optimization; Point-to-set theory; Convex vector optimization; Efficiency; 90C25; 90C51; 90C29;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the logarithmic barrier method for nonsmooth convex optimization in the setting of point-to-set theory. This general framework allows us to both extend and include classical results. We also propose an application for finding efficient points of nonsmooth constrained convex vector-valued problems.
引用
收藏
页码:95 / 112
页数:17
相关论文
共 32 条
  • [1] Auslender A.(1999)Penalty and barrier methods: a unified framework SIAM J. Optim. 10 211-230
  • [2] Auslender A.(1997)Asymptotic analysis for penalty and barrier in convex and linear programming Math. Oper. Res. 22 43-62
  • [3] Cominetti R.(2000)Steepest descent methods for multicriteria optimimization Math. Methods Oper. Res. 51 479-494
  • [4] Haddou M.(2000)Welldefinedness and limiting behavior of the central path Comp. Appl. Math. 19 57-78
  • [5] Fliege J.(2004)A projected gradient method for vector optimization problems Comp. Optim. Appl. 28 5-29
  • [6] Svaiter B.F.(2002)The central path in smooth convex semidefinite programs Optimization 51 207-233
  • [7] Graña Drummond L.M.(2005)A steepest descent method for vector optimization J. Comp. Appl. Math. 175 395-414
  • [8] Iusem A.N.(2002)On the convergence of the central path in semidefinite optimization SIAM J. Optim. 12 1090-1099
  • [9] Graña Drummond L.M.(1984)Scalarization in vector optimization Math. Program. 29 203-218
  • [10] Iusem A.N.(1987)Scalarization of vector optimization problems J. Optim. Theory Appl. 55 85-102