Pre-Lie Groups in Abstract Differential Geometry

被引:0
作者
M. H. Papatriantafillou
机构
[1] University of Athens,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2015年 / 12卷
关键词
Primary 18F15; Secondary 22E60; 43A65; Differential triad; Lie group; left-invariant vector field; adjoint representation;
D O I
暂无
中图分类号
学科分类号
摘要
We study groups with “differential structure” in the framework of Abstract Differential Geometry, an abstraction of the classical differential geometry of manifolds, via sheaf-theoretic methods, without ordinary calculus; the basic tool is the notion of a differential triad. First, we consider pre-Lie groups, i.e., semi-topological groups with compatible differential triads and we prove that such groups have “left-invariant vector fields” and “left-invariant derivations”, behaving like the classical ones. Next, for every pre-Lie group, we define an appropriate Lie algebra and prove the existence of a naturally associated adjoint representation of the initial group into the latter.
引用
收藏
页码:315 / 328
页数:13
相关论文
共 50 条
  • [41] Geometrical Categories of Generalized Lie Groups and Lie Group-Groupoids
    Farhangdoost, M. R.
    Nasirzade, T.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2013, 37 (A1): : 69 - 73
  • [42] The Jordan Property for Lie Groups and Automorphism Groups of Complex Spaces
    V. L. Popov
    Mathematical Notes, 2018, 103 : 811 - 819
  • [43] Nets of standard subspaces on Lie groups
    Neeb, Karl-Hermann
    Olafsson, Gestur
    ADVANCES IN MATHEMATICS, 2021, 384
  • [44] Generalized Bicomplex Numbers and Lie Groups
    Karakus, Siddika Ozkaldi
    Aksoyak, Ferdag Kahraman
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (04) : 943 - 963
  • [45] Higher order geodesics in Lie groups
    Tomasz Popiel
    Mathematics of Control, Signals, and Systems, 2007, 19 : 235 - 253
  • [46] Generalized Bicomplex Numbers and Lie Groups
    Sıddıka Özkaldı Karakuş
    Ferdag Kahraman Aksoyak
    Advances in Applied Clifford Algebras, 2015, 25 : 943 - 963
  • [47] Direct limits of regular Lie groups
    Gloeckner, Helge
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (01) : 74 - 81
  • [48] ON THE INTERIOR OF SUBSEMIGROUPS OF LIE-GROUPS
    HOFMANN, KH
    RUPPERT, WAF
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (01) : 169 - 179
  • [49] ON SUBSEMIGROUPS OF SEMISIMPLE LIE-GROUPS
    KELLYLYTH, D
    MCCRUDDEN, M
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (02): : 153 - 156
  • [50] A product theorem in simple Lie groups
    Nicolas de Saxcé
    Geometric and Functional Analysis, 2015, 25 : 915 - 941