Optical filaments and optical bullets in dispersive nonlinear media

被引:0
作者
L. M. Kovachev
L. I. Pavlov
L. M. Ivanov
D. Y. Dakova
机构
[1] Bulgarian Academy of Sciences,Institute of Electronics
[2] Institute for Nuclear Research and Nuclear Energy,undefined
[3] Plovdiv University,undefined
来源
Journal of Russian Laser Research | 2006年 / 27卷
关键词
optical filaments; light bullets; vortex solitons; dispersive nonlinear media; optical confinement; paraxial-wave approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the evolution of picosecond and femtosecond optical pulses governed by the amplitude vector equation in the optical and UV domains. We have written this equation in different coordinate frames, namely, in the laboratory frame, the Galilean frame, and the moving-in-time frame and have normalized it for the cases of different and equal transverse and longitudinal sizes of optical pulses or modulated optical waves. For optical pulses with a small transverse size and a large longitudinal size (optical filaments), we obtain the well-known paraxial approximation in all the coordinate frames, while for optical pulses with relatively equal transverse and longitudinal sizes (so-called light bullets), we obtain new non-paraxial nonlinear amplitude equations. In the case of optical fields with low intensity, we have reduced the nonlinear amplitude vector equations governing the light-bullet evolution to the linear amplitude equations. We have solved the linear equations using the method of Fourier transform. An unexpected new result is the relative stability of light bullets and the significant decrease in the diffraction enlargement of light bullets with respect to the case of long pulses in the linear propagation regime.
引用
收藏
页码:185 / 203
页数:18
相关论文
共 50 条
  • [41] Stable spatial and spatiotemporal optical soliton in the core of an optical vortex
    Adhikari, S. K.
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [42] Observation of optical azimuthons
    Minovich, Alexander
    Neshev, Dragomir N.
    Desyatnikov, Anton S.
    Krolikowski, Wieslaw
    Kivshar, Yuri S.
    OPTICS EXPRESS, 2009, 17 (26): : 23610 - 23616
  • [43] EXISTENCE OF OPTICAL VORTICES
    Yang, Yisong
    Zhang, Ruifeng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 484 - 498
  • [44] Optical vortices in antiguides
    Marrucci, Lorenzo
    Smyth, Noel F.
    Assanto, Gaetano
    OPTICS LETTERS, 2013, 38 (10) : 1618 - 1620
  • [45] Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity
    Zhou, Qin
    Zhong, Yu
    Triki, Houria
    Sun, Yunzhou
    Xu, Siliu
    Liu, Wenjun
    Biswas, Anjan
    CHINESE PHYSICS LETTERS, 2022, 39 (04)
  • [46] Multicore vortex solitons in cubic-quintic nonlinear media with a Bessel lattice potential
    Wu, Di
    Li, Junhao
    Gao, Xi
    Shi, Yi
    Zhao, Yuan
    Dong, Liangwei
    Malomed, Boris A.
    Zhu, Ni
    Xu, Siliu
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [47] Surface superlattice solitons in nonlocal nonlinear media
    Huang Hui-Chang
    He Ying-Ji
    Wang He-Zhou
    CHINESE PHYSICS B, 2009, 18 (11) : 4919 - 4923
  • [48] Comparisons between sine-Gordon and perturbed nonlinear Schrodinger equations for modeling light bullets beyond critical collapse
    Bao, Weizhu
    Dong, Xuanchun
    Xin, Jack
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (13) : 1120 - 1134
  • [49] FAMILIES OF DIPOLE SOLITONS IN SELF-DEFOCUSING KERR MEDIA AND PARTIAL PARITY-TIME-SYMMETRIC OPTICAL POTENTIALS
    Wang, Hong
    Huang, Jing
    Ren, Xiaoping
    Weng, Yuanghang
    Mihalache, Dumitru
    He, Yingji
    ROMANIAN JOURNAL OF PHYSICS, 2018, 63 (5-6):
  • [50] Soliton dynamics induced by periodic spatially inhomogeneous losses in optical media described by the complex Ginzburg-Landau model
    He, Yingji
    Mihalache, Dumitru
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2012, 29 (09) : 2554 - 2558