Reduction theory for a rational function field

被引:0
作者
Amritanshu Prasad
机构
[1] Max-Planck-Institut für Mathematik,
来源
Proceedings of the Indian Academy of Sciences - Mathematical Sciences | 2003年 / 113卷
关键词
Automorphic form; function field;
D O I
暂无
中图分类号
学科分类号
摘要
LetG be a split reductive group over a finite field Fq. LetF = Fq(t) and let A denote the adèles ofF. We show that every double coset inG(F)/G(A)/K has a representative in a maximal split torus ofG. HereK is the set of integral adèlic points ofG. WhenG ranges over general linear groups this is equivalent to the assertion that any algebraic vector bundle over the projective line is isomorphic to a direct sum of line bundles.
引用
收藏
页码:153 / 163
页数:10
相关论文
共 10 条
[1]  
Dedekind R(1882)Die theorie der algebraischen funktionen einer veränderlichen J. Reine Angew. Math. 92 181-290
[2]  
Weber H(1991)Automorphic spectra on the tree of PGL Enseign. Math. (2) 37 31-43
[3]  
Efrat I(1957)Sur la classification des fibrés holomorphes sur la sphère de Riemann Am. J. Math. 79 121-138
[4]  
Grothendieck A(1968)Halbeinfache Gruppenschemata über vollständigen Kurven Invent. Math. 6 107-149
[5]  
Harder G(1969)Minkowskische Reduktionstheorie über Funktionenkörpern Invent. Math. 7 33-54
[6]  
Harder G(1974)Chevalley groups over function fields and automorphic forms Ann. Math. (2) 100 249-306
[7]  
Harder G(2000)Tamagawazahlen und die Poincaréreihen affiner Weylgruppen J. Reine Angew. Math. 519 31-39
[8]  
Kaiser C(2002)Almost unramified discrete spectrum of split groups over F Duke Math. J. 113 237-257
[9]  
Riedel J-E(undefined)( undefined undefined undefined-undefined
[10]  
Prasad A(undefined)) undefined undefined undefined-undefined