Precision calculation of 1/4-BPS Wilson loops in AdS5×S5

被引:0
作者
V. Forini
V. Giangreco M. Puletti
L. Griguolo
D. Seminara
E. Vescovi
机构
[1] Institut für Physik,Science Institute
[2] Humboldt-Universität zu Berlin,undefined
[3] IRIS Adlershof,undefined
[4] University of Iceland,undefined
[5] Dipartimento di Fisica e Scienze della Terra,undefined
[6] Università di Parma and INFN Gruppo Collegato di Parma,undefined
[7] Dipartimento di Fisica,undefined
[8] Università di Firenze and INFN Sezione di Firenze,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Wilson; ’t Hooft and Polyakov loops; AdS-CFT Correspondence; Sigma Models;
D O I
暂无
中图分类号
学科分类号
摘要
We study the strong coupling behaviour of 1/4-BPS circular Wilson loops (a family of “latitudes”) in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} Super Yang-Mills theory, computing the one-loop corrections to the relevant classical string solutions in AdS5×S5. Supersymmetric localization provides an exact result that, in the large ’t Hooft coupling limit, should be reproduced by the sigma-model approach. To avoid ambiguities due to the absolute normalization of the string partition function, we compare the ratio between the generic latitude and the maximal 1/2-BPS circle: any measure-related ambiguity should simply cancel in this way. We use the Gel’fand-Yaglom method with Dirichlet boundary conditions to calculate the relevant functional determinants, that present some complications with respect to the standard circular case. After a careful numerical evaluation of our final expression we still find disagreement with the localization answer: the difference is encoded into a precise “remainder function”. We comment on the possible origin and resolution of this discordance.
引用
收藏
相关论文
共 151 条
  • [1] Berenstein DE(1999)The operator product expansion for Wilson loops and surfaces in the large-N limit Phys. Rev. D 59 105023-undefined
  • [2] Corrado R(1999)Wilson loops and minimal surfaces Phys. Rev. D 60 125006-undefined
  • [3] Fischler W(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
  • [4] Maldacena JM(2000)Wilson loops in N = 4 supersymmetric Yang-Mills theory Nucl. Phys. B 582 155-undefined
  • [5] Drukker N(2001)An exact prediction of N = 4 SUSYM theory for string theory J. Math. Phys. 42 2896-undefined
  • [6] Gross DJ(2000)Green-Schwarz string in AdS JHEP 04 021-undefined
  • [7] Ooguri H(2008) × S JHEP 05 064-undefined
  • [8] Pestun V(2008): semiclassical partition function Nucl. Phys. B 798 72-undefined
  • [9] Erickson JK(2012)Matching the circular Wilson loop with dual open string solution at 1-loop in strong coupling JHEP 09 053-undefined
  • [10] Semenoff GW(2014)A semiclassical string description of Wilson loop with local operators Phys. Rev. D 89 126008-undefined