On local well-posedness for Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document}-critical nonlinear Schrödinger equations

被引:0
作者
Kosuke Tabata
Takeshi Wada
机构
[1] Shimane University,Mathematics Course, Interdisciplinary Graduate School of Science and Engineering
[2] Shimane University,Department of Mathematics
关键词
Nonlinear Schrödinger equations; Well-posedness; Critical exponents; Sobolev spaces; Primary 35Q55; Secondary 35A01; 35A02; 35B30;
D O I
10.1007/s00028-023-00889-9
中图分类号
学科分类号
摘要
This paper concerns the Cauchy problem for the nonlinear Schrödinger equation with power nonlinearity. Time local well-posedness in Hs(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^N)$$\end{document} is proved in the case where the nonlinear term is critical from the scaling point of view, and has limited regularity so that the nonlinear term does not belong to Cs(R2;R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^s(\mathbb {R}^2;\mathbb {R}^2)$$\end{document}.
引用
收藏
相关论文
共 35 条
  • [1] Cazenave T(2016)Local well-posedness for the Trans. Am. Math. Soc. 368 7911-7934
  • [2] Fang D(1990)-critical nonlinear Schrödinger equation Nonlinear Anal. 14 807-836
  • [3] Han Z(2013)The Cauchy problem for the critical nonlinear Schrödinger equation in J. Differ. Equ. 255 2018-2064
  • [4] Cazenave T(2013)Continuous dependence of Cauchy problem for nonlinear Schrödinger equation in J. Funct. Anal. 264 1438-1455
  • [5] Weissler FB(1994)On the well-posedness for NLS in Ann. Inst. H. Poincaré Phys. Théor. 60 211-239
  • [6] Dai W(1979)On the existence of the wave operators for a class of nonlinear Schrödinger equations J. Funct. Anal. 32 1-32
  • [7] Yang W(1985)On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case Ann. Inst. H. Poincaré Anal. Non Linéaire 2 309-327
  • [8] Cao D(1987)The global Cauchy problem for the nonlinear Schrödinger equation revisited Ann. Inst. H. Poincaré Phys. Théor. 46 113-129
  • [9] Fang D(1995)On nonlinear Schrödinger equations J. Anal. Math. 67 281-306
  • [10] Han Z(1998)On nonlinear Schrödinger equations. II. Am. J. Math. 120 955-980