Singular quadratic eigenvalue problems: linearization and weak condition numbers

被引:0
作者
Daniel Kressner
Ivana Šain Glibić
机构
[1] EPFL,Institute of Mathematics
[2] University of Zagreb,Faculty of Science, Department of Mathematics
来源
BIT Numerical Mathematics | 2023年 / 63卷
关键词
Singular eigenvalue problems; Polynomial eigenvalue problem; Linearization; Weak condition number; 65F30; 65F15; 65F35; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
The numerical solution of singular eigenvalue problems is complicated by the fact that small perturbations of the coefficients may have an arbitrarily bad effect on eigenvalue accuracy. However, it has been known for a long time that such perturbations are exceptional and standard eigenvalue solvers, such as the QZ algorithm, tend to yield good accuracy despite the inevitable presence of roundoff error. Recently, Lotz and Noferini quantified this phenomenon by introducing the concept of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-weak eigenvalue condition numbers. In this work, we consider singular quadratic eigenvalue problems and two popular linearizations. Our results show that a correctly chosen linearization increases δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-weak eigenvalue condition numbers only marginally, justifying the use of these linearizations in numerical solvers also in the singular case. We propose a very simple but often effective algorithm for computing well-conditioned eigenvalues of a singular quadratic eigenvalue problems by adding small random perturbations to the coefficients. We prove that the eigenvalue condition number is, with high probability, a reliable criterion for detecting and excluding spurious eigenvalues created from the singular part.
引用
收藏
相关论文
共 52 条
  • [1] Adhikari B(2011)Structured eigenvalue condition numbers and linearizations for matrix polynomials Linear Algebra Appl. 435 2193-2221
  • [2] Alam R(2004)On the condition of a complex eigenvalue under real perturbations BIT 44 209-214
  • [3] Kressner D(2008)Trimmed linearizations for structured matrix polynomials Linear Algebra Appl. 429 2373-2400
  • [4] Byers R(2010)First order spectral perturbation theory of square singular matrix polynomials Linear Algebra Appl. 432 892-910
  • [5] Kressner D(2009)Linearizations of singular matrix polynomials and the recovery of minimal indices Electron. J. Linear Algebra 18 371-402
  • [6] Byers R(2008)First order spectral perturbation theory of square singular matrix pencils Linear Algebra Appl. 429 548-576
  • [7] Mehrmann V(1993)The generalized Schur decomposition of an arbitrary pencil ACM Trans. Math. Softw. 19 160-174
  • [8] Hongguo X(1993): Robust software with error bounds and applications. I. Theory and algorithms ACM Trans. Math. Softw. 19 175-201
  • [9] De Terán F(2020)The generalized Schur decomposition of an arbitrary pencil Linear Algebra Appl. 584 37-78
  • [10] Dopico FM(2004): Robust software with error bounds and applications. II. Software and applications SIAM J. Matrix Anal. Appl. 26 252-256