On the Global Existence for the Kuramoto-Sivashinsky Equation

被引:0
作者
Igor Kukavica
David Massatt
机构
[1] University of Southern California,Department of Mathematics
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
Kuramoto-Sivashinsky equation; Global existence; Oscillatory data; Thin domains;
D O I
暂无
中图分类号
学科分类号
摘要
We address the global existence of solutions for the 2D Kuramoto-Sivashinsky equations in a periodic domain [0,L1]×[0,L2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,L_1]\times [0,L_2]$$\end{document} with initial data satisfying ‖u0‖L2≤C-1L2-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert u_0\Vert _{L^2}\le C^{-1}L_2^{-2}$$\end{document}, where C is a constant. We prove that the global solution exists under the condition L2≤1/CL13/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2\le 1/C L_1^{3/5}$$\end{document}, improving earlier results. The solutions are smooth and decrease energy until they are dominated by CL13/2L21/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C L_1^{3/2}L_2^{1/2}$$\end{document}, implying the existence of an absorbing ball in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}.
引用
收藏
页码:69 / 85
页数:16
相关论文
共 53 条
[1]  
Ambrose DM(2019)Global existence and analyticity for the 2D Kuramoto-Sivashinsky equation J. Dynam. Differ. Equ. 31 1525-1547
[2]  
Mazzucato AL(1996)Large-eigenvalue global existence and regularity results for the Navier-Stokes equation J. Differ. Equ. 127 365-390
[3]  
Avrin JD(2014)Anisotropic estimates for the two-dimensional Kuramoto-Sivashinsky equation J. Dynam. Differ. Equ. 26 461-476
[4]  
Benachour S(2006)Uncertainty estimates and Nonlinearity 19 2023-2039
[5]  
Kukavica I(1993) bounds for the Kuramoto-Sivashinsky equation Comm. Math. Phys. 152 203-214
[6]  
Rusin W(2007)A global attracting set for the Kuramoto-Sivashinsky equation J. Differ. Equ. 240 145-163
[7]  
Ziane M(1994)Existence and generalized Gevrey regularity of solutions to the Kuramoto-Sivashinsky equation in Comm. Pure Appl. Math. 47 293-306
[8]  
Bronski JC(2005)Stability of the Kuramoto-Sivashinsky and related systems Comm. Pure Appl. Math. 58 297-318
[9]  
Gambill TN(2003)New bounds for the Kuramoto-Sivashinsky equation Nonlin. Anal. 52 69-78
[10]  
Collet P(2015)A remark on time-analyticity for the Kuramoto-Sivashinsky equation Comm. Part. Differ. Equ. 40 2237-2265