Multivariate Normal Approximation for Functionals of Random Polytopes

被引:0
作者
Jens Grygierek
机构
[1] Osnabrück University,Institute of Mathematics
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Central limit theorem; Multivariate limit theorem; Intrinsic volumes; f-vector; Random polytope; Random convex hull; Stochastic geometry; Poisson point process; Oracle estimator; Volume estimation; 52A22; 60D05; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the random polytope that is given by the convex hull of a Poisson point process on a smooth convex body in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. We prove central limit theorems for continuous motion invariant valuations including the Wills functional and the intrinsic volumes of this random polytope. Additionally we derive a central limit theorem for the oracle estimator that is an unbiased and minimal variance estimator for the volume of a convex set. Finally we obtain a multivariate limit theorem for the intrinsic volumes and the components of the f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {f}$$\end{document}-vector of the random polytope.
引用
收藏
页码:897 / 922
页数:25
相关论文
共 41 条
[1]  
Baldin N(2016)Unbiased estimation of the volume of a convex body Stoch. Process. Appl. 126 3716-3732
[2]  
Reiß M(2008)Random points and lattice points in convex bodies Bull. Am. Math. Soc. (N.S.) 45 339-365
[3]  
Bárány I(1997)Few points to generate a random polytope Mathematika 44 325-331
[4]  
Bárány I(2010)Intrinsic volumes of inscribed random polytopes in smooth convex bodies Adv. Appl. Probab. 42 605-619
[5]  
Dalla L(2010)Poisson polytopes Ann. Probab. 38 1507-1531
[6]  
Bárány I(2013)Brownian limits, local limits and variance asymptotics for convex hulls in the ball Ann. Probab. 41 50-108
[7]  
Fodor F(2014)Variance asymptotics for random polytopes in smooth convex bodies Probab. Theory Relat. Fields 158 435-463
[8]  
Vígh V(2004)A simplified elementary proof of Hadwiger’s volume theorem Geom. Dedicata 105 107-120
[9]  
Bárány I(1975)Das Wills’sche funktional Monatsh. Math. 79 213-221
[10]  
Reitzner M(1995)A short proof of Hadwigers characterization theorem Mathematika 42 329-339