The character table of the finite Chevalley group F4(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4(q)$$\end{document} for q a power of 2

被引:0
作者
Meinolf Geck
机构
[1] Universität Stuttgart,Lehrstuhl für Algebra, FB Mathematik
关键词
Chevalley group; Lusztig induction; Unipotent characters; Primary 20C33; Secondary 20G40;
D O I
10.1007/s00013-023-01879-6
中图分类号
学科分类号
摘要
Let q be a prime power and F4(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4(q)$$\end{document} be the Chevalley group of type F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4$$\end{document} over a finite field with q elements. Marcelo and Shinoda (Tokyo J Math 18:303–340, 1995) determined the values of the unipotent characters of F4(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4(q)$$\end{document} on all unipotent elements, extending earlier work by Kawanaka and Lusztig to small characteristics. Assuming that q is a power of 2, we explain how to construct the complete character table of F4(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_4(q)$$\end{document}.
引用
收藏
页码:669 / 679
页数:10
相关论文
共 13 条
[1]  
Deligne P(1976)Representations of reductive groups over finite fields Ann. of Math. (2) 103 103-161
[2]  
Lusztig G(1972)The characters of the finite symplectic group Osaka J. Math. 9 75-94
[3]  
Enomoto H(1986), Adv. Math. 61 103-155
[4]  
Lusztig G(1986)Character sheaves V J. Algebra 104 146-194
[5]  
Lusztig G(1992)On the character values of finite Chevalley groups at unipotent elements J. Amer. Math. Soc. 5 971-986
[6]  
Lusztig G(1993)Remarks on computing irreducible characters Comm. Algebra 21 747-798
[7]  
Malle G(1995)Green functions for groups of type Tokyo J. Math. 18 303-340
[8]  
Marcelo RM(1974) and J. Fac. Sci. Univ. Tokyo 21 133-150
[9]  
Shinoda K(1995) in characteristic Adv. Math. 111 244-313
[10]  
Shinoda K(1995)Values of the unipotent characters of the Chevalley group of type Adv. Math. 111 314-354