Modeling the inconsistency in intertemporal choice: the generalized Weibull discount function and its extension

被引:10
作者
Cruz Rambaud S. [1 ]
González Fernández I. [1 ]
Ventre V. [2 ]
机构
[1] Departamento de Economía y Empresa, Universidad de Almería, La Cañada de San Urbano, s/n, Almería
[2] Dipartimento di Matematica e Fisica, Università della Campania “Luigi Vanvitelli”, Viale Lincoln, 5, Caserta
关键词
Dynamic inconsistency; Exponential; Generalized Weibull discount function; Hyperbolic; q-exponential;
D O I
10.1007/s10436-018-0318-3
中图分类号
学科分类号
摘要
The aim of this paper is to obtain the family of the so-called generalized Weibull discount functions, introduced by Takeuchi (Game Econ Behav 71:456–478, 2011), by deforming the q-exponential discount function by means of the Stevens’ “power” law. The obtained discount functions exhibit different degrees of inconsistency and so they can be classified according to the value of their characteristic deforming parameters. Moreover, we extend the construction of the generalized Weibull discount function starting from any discount function instead of the q-exponential discounting. In any case, the value of the parameter θ of these new discount functions is extended from (0, 1] to the union of the intervals (-∞,0)∪(0,+∞). © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:415 / 426
页数:11
相关论文
共 22 条
[1]  
Cajueiro D.O., A note on the relevance of the q -exponential function in the context of intertemporal choices, Phys A, 364, pp. 385-388, (2006)
[2]  
Cruz Rambaud S., Munoz Torrecillas M.J., Some considerations on the social discount rate, Environ Sci Policy, 8, pp. 343-355, (2005)
[3]  
Cruz Rambaud S., Munoz Torrecillas M.J., A generalization of the q -exponential discounting function, Phys A, 392, 14, pp. 3045-3050, (2013)
[4]  
Cruz Rambaud S., Munoz Torrecillas M.J., Some characterizations of (strongly) subadditive discounting functions, Appl Math Comput, 243, pp. 368-378, (2014)
[5]  
Cruz Rambaud S., Munoz Torrecillas M.J., Measuring impatience in intertemporal choice, PLoS ONE, 11, 2, (2016)
[6]  
Cruz Rambaud S., Munoz Torrecillas M.J., Takahashi T., Observed and normative discount functions in addiction and other diseases, Front Pharmacol, 8, (2017)
[7]  
Cruz Rambaud S., Ventre A.G.S., Subadditive discount functions with a transition period, Int J Intell Syst, 30, 7, pp. 837-849, (2015)
[8]  
Cruz Rambaud S., Ventre V., Deforming time in a non-additive discount function, Int J Intell Syst, 32, 5, pp. 467-480, (2017)
[9]  
Frederick S., Loewenstein G., O'Donoghue T., Time discounting and time preference: a critical review, J Econ Lit, 40, 2, pp. 351-401, (2002)
[10]  
Lidl R., Pilz G., Applied Abstract Algebra, (1998)