Existence and uniqueness of positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions

被引:0
作者
J. Caballero
J. Harjani
K. Sadarangani
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2021年 / 115卷
关键词
Fractional differential equation; Infinite-point boundary value problem; Fixed point theorem; Positive solution; 34B15; 26A33; 47H10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a result about the existence and uniqueness of positive solutions for a class of singular fractional differential equations with infinite-point boundary value conditions. The main tool used in the proof of the results is a fixed point theorem.
引用
收藏
相关论文
共 19 条
[1]  
Wang Y(2012)Positive solutions for fractional m-point boundary value problem in Banach spaces Acta Math. Sci. 32 246-256
[2]  
Liu L(2013)Positive solutions of m-point boundary value problems for a class of nonlinear fractional differential equations J. Appl. Math. Comput. 42 387-399
[3]  
Wang L(2015)Positive solutions for a class of singular fractional differential equation with infinite-point boundary value conditions Appl. Math. Lett. 39 22-27
[4]  
Zhang X(2019)On positive solutions for a m-point fractional boundary value problem on an infinite interval Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 3635-3647
[5]  
Zhang X(2020)Foundation of stochastic fractional calculus with fractional approximation of stochastic processes Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114 32-1057
[6]  
Caballero J(2020)Fractional Sturm–Liouville eigenvalue problems I Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. Paper No. 46, Exactas Fís. Nat. Ser. A Mat. 114 15-3167
[7]  
Harjani J(2019)Existence of nontrivial solutions for a system of fractional advection-dispersion equations Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 1041-undefined
[8]  
Sadarangani K(2019)Existence and multiplicity of solutions for Kirchhoff type equations involving fractional p-Laplacian without compact condition Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113 3147-undefined
[9]  
Anastassiou GA(2014)Some fixed point theorems concerning F-contraction in complete metric spaces Fixed Point Theory Appl. 2014 210-undefined
[10]  
Dehgahan M(undefined)undefined undefined undefined undefined-undefined