Existence of ground states for fractional Choquard–Kirchhoff equations with magnetic fields and critical exponents

被引:0
作者
Zhenyu Guo
Lujuan Zhao
机构
[1] Liaoning Normal University,School of Mathematics
来源
Periodica Mathematica Hungarica | 2023年 / 87卷
关键词
Choquard–Kirchhoff equation; Ground states; Fractional magnetic operator; Critical exponents; Nehari method; 35B33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the following fractional Choquard–Kirchhoff equation with magnetic fields and critical exponents M([u]s,A2)(-Δ)Asu+V(x)u=[|x|-α∗|u|2α,s∗]|u|2α,s∗-2u+λf(x,u)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} M([u]_{s,A}^{2})(-\Delta )_{A}^{s}u+V(x)u=[|x|^{-\alpha }*|u|^{2^{*}_{\alpha ,s}}]|u|^{2^{*}_{\alpha ,s}-2}u+\lambda f(x,u) \quad \text {in } {\mathbb {R}}^{N}, \end{aligned}$$\end{document}where N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document} with 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, A=(A1,A2,…,An)∈(RN,RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A=(A_{1},A_{2},\ldots ,A_{n})\in ({\mathbb {R}}^{N},{\mathbb {R}}^{N})$$\end{document} is a magnetic potential, 2α,s∗=(2N-α)/(N-2s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{*}_{\alpha ,s}=(2N-\alpha )/(N-2s)$$\end{document} is the fractional Hardy—Littlewood—Sobolev critical exponent with 0<α<2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha <2s$$\end{document}, M([u]s,A2)=a+b[u]s,A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M([u]_{s,A}^{2})=a+b[u]_{s,A}^{2}$$\end{document} with a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b>0$$\end{document}, u∈(RN,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in ({\mathbb {R}}^{N}, {\mathbb {C}})$$\end{document} is a complex valued function, V∈L∞(RN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in L^{\infty }({\mathbb {R}}^{N})$$\end{document} and f∈(RN×R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in ({\mathbb {R}}^{N}\times {\mathbb {R}},{\mathbb {R}})$$\end{document} are continuous functions, (-Δ)As\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}_{A}$$\end{document} is a fractional magnetic Laplacian operator. Under some suitable assumptions, by applying the Nehari method and the concentration-compactness principle, we obtain the existence of ground state solutions.
引用
收藏
页码:468 / 483
页数:15
相关论文
共 33 条
  • [1] Ambrosio V(2019)Concentration phenomena for a fractional Choquard equation with magnetic field Dyn. Partial Differ. Equ. 16 125-149
  • [2] d’Avenia P(2015)On fractional Choquard equations Math. Models Methods Appl. Sci. 25 1447-1476
  • [3] Siciliano G(2018)Ground states for fractional magnetic operators ESAIM Control Optim. Calc. Var. 24 1-24
  • [4] Squassina M(2019)A fractional Kirchhoff problem involving a singular term and a critical nonlinearity Adv. Nonlinear Anal. 8 645-660
  • [5] d’Avenia P(2014)A critical Kirchhoff type problem involving a nonlocal operator Nonlinear Anal. 94 156-170
  • [6] Squassina M(2020)Ground state solutions for fractional Choquard equations involving upper critical exponent Nonlinear Anal. 197 59-74
  • [7] Fiscella A(2020)Ground states for fractional Schrödinger equations with electromagnetic fields and critical growth Acta Math. Sci. Ser. B (Engl. Ed.) 40 2473-2490
  • [8] Fiscella A(2020)Fractional magnetic Schrödinger–Kirchhoff problems with convolution and critical nonlinearities Math. Methods Appl. Sci. 43 1-32
  • [9] Valdinoci E(2017)Ground states for fractional Kirchhoff equations with critical nonlinearity in low dimension Nonlinear Differ. Equ. Appl. (NoDEA) 24 455-467
  • [10] Li Q(2010)Classification of positive solitary solutions of the nonlinear Choquard equation Arch. Ration. Mech. Anal. 195 402-420