A Nemytskii-Edelstein type fixed point theorem for partial metric spaces

被引:0
|
作者
Naseer Shahzad
Oscar Valero
机构
[1] King Abdulaziz University,Department of Mathematics
[2] Universidad de las Islas Baleares,Departamento de Ciencias Matemáticas e Informática
来源
Fixed Point Theory and Applications | / 2015卷
关键词
Topological Space; Fixed Point Theorem; Contractive Condition; Cauchy Sequence; Fixed Point Theory;
D O I
暂无
中图分类号
学科分类号
摘要
In 1994, Matthews obtained an extension of the celebrated Banach fixed point theorem to the partial metric framework (Ann. N.Y. Acad. Sci. 728:183-197, 1994). Motivated by the Matthews extension of the Banach theorem, we present a Nemytskii-Edelstein type fixed point theorem for self-mappings in partial metric spaces in such a way that the classical one can be retrieved as a particular case of our new result. We give examples which show that the assumed hypothesis in our new result cannot be weakened. Moreover, we show that our new fixed point theorem allows one to find fixed points of mappings in some cases in which the Matthews result and the classical Nemytskii-Edelstein one cannot be applied. Furthermore, we provide a negative answer to the question about whether our new result can be retrieved as a particular case of the classical Nemytskii-Edelstein one whenever the metrization technique, developed by Hitzler and Seda (Mathematical Aspects of Logic Programming Semantics, 2011), is applied to partial metric spaces.
引用
收藏
相关论文
共 50 条
  • [21] Fixed point theorems for operators on partial metric spaces
    Karapinar, Erdal
    Erhan, Inci M.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1894 - 1899
  • [22] Fixed point theorem on two complete cone metric spaces
    Huang X.
    Zhu C.
    Wen X.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (2) : 341 - 352
  • [23] A Fixed Point Theorem for Contractive Maps in Cone Metric Spaces
    Kieu Phuong Chi
    Truong Phuc Tuan Anh
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (03) : 333 - 340
  • [24] A fixed point theorem for unbounded D-metric spaces
    Rhoades, BE
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (10) : 1513 - 1520
  • [25] Common Fixed Point Results in Metric-Type Spaces
    Mirko Jovanović
    Zoran Kadelburg
    Stojan Radenović
    Fixed Point Theory and Applications, 2010
  • [26] A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces
    Hadzic, O
    Pap, E
    FUZZY SETS AND SYSTEMS, 2002, 127 (03) : 333 - 344
  • [27] EDELSTEIN TYPE FIXED POINT THEOREMS
    Karapinar, Erdal
    ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (01): : 51 - 58
  • [28] FIXED POINT THEOREM FOR CIRIC'S TYPE CONTRACTIONS IN GENERALIZED QUASI-METRIC SPACES
    Kikina, Luljeta
    Kikina, Kristaq
    Gjino, Kristaq
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (07) : 1257 - 1265
  • [29] Fixed point theorems for expanding mappings in partial metric spaces
    Huang, Xianjiu
    Zhu, Chuanxi
    Wen, Xi
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (01): : 213 - 224
  • [30] Fixed point theorems on quasi-partial metric spaces
    Karapinar, Erdal
    Erhan, I. M.
    Ozturk, Ali
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2442 - 2448