Sharp Threshold of Global Existence and Instability of Standing Wave for a Davey-Stewartson System

被引:0
作者
Zaihui Gan
Jian Zhang
机构
[1] Sichuan Normal University,College of Mathematics and Software Science
[2] The Chinese University of Hong Kong,The Institute of Mathematical Sciences
来源
Communications in Mathematical Physics | 2008年 / 283卷
关键词
Cauchy Problem; Standing Wave; Global Existence; Water Wave; Singular Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the sharp threshold of blowup and global existence of the solution as well as the strong instability of standing wave \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi(t,x) = e^{i\omega t} u(x)$$\end{document} for the system:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i\phi_{t}+\Delta \phi+a|\phi|^{p-1}\phi+b E_{1}(|\phi|^{2})\phi\,=\,0,\quad t\,\geq 0,\quad x\in {\bf R}^{N}, \quad \quad \quad ({\rm DS})$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a > 0, b > 0, 1 < p < \frac{N+2}{(N-2)^{+}}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\,\in\,\{2,3\}$$\end{document}. Firstly, by constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we derive a sharp threshold for global existence and blowup of the solution to the Cauchy problem for (DS) provided \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+\frac{4}{N}\,\leq p\, < \frac{N+2}{(N-2)^{+}}$$\end{document} . Secondly, by using the scaling argument, we show how small the initial data are for the global solutions to exist. Finally, we prove the strong instability of the standing waves with finite time blow up for any ω > 0 by combining the former results.
引用
收藏
页码:93 / 125
页数:32
相关论文
共 52 条
  • [1] Berestycki H.(1981)Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees C. R. Acad. Sci. Paris 293 489-492
  • [2] Cazenave T.(1982)Orbital stability of standing waves for nonlinear Schrödinger equations Commun. Math. Phys. 85 549-561
  • [3] Cazenave T.(1992)On the existence of standing waves for a Davey-Stewartson system Comm. P.D.E. 17 967-988
  • [4] Lions P.L.(1993)On the instability of ground states for a Davey-Stewartson system, Ann Inst. Henri Poincaré. Phys. Théor. 58 85-104
  • [5] Cipolatti R.(1974)On three-dimensional packets of surface waves Proc. R. Soc. London A 338 101-110
  • [6] Cipolatti R.(2006)Sharp conditions of global existence for the generalized Davey-Stewartson system in three dimensional space Acta Mathematica Scientia, Series A 26 87-92
  • [7] Davey A.(2004)Sharp conditions of global existence for the generalized Davey-Stewartson system in two space dimensions Math. Appl. 17 360-365
  • [8] Stewartson K.(2004)Sharp conditions of global existence and collapse for coupled nonlinear Schrödinger equations J. Part. Diff. Eqs. 17 207-220
  • [9] Gan Z.H.(1979)On a class of nonlinear Schrödinger equations J. Funct. Anal. 32 1-71
  • [10] Zhang J.(1985)The global Cauchy problem for the nonlinear Schrödinger equation Ann.Inst. H. Poincaré. Anal. Non Linéaire 2 309-327