When is a spherical body of constant diameter of constant width?

被引:0
作者
Marek Lassak
机构
[1] University of Science and Technology,
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Spherical geometry; Hemisphere; Lune; Convex body; Width; Thickness; Constant width; Constant diameter; 52A55; 97G60;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a smooth convex body of diameter δ<π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta < \frac{\pi }{2}$$\end{document} on the d-dimensional unit sphere Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} is of constant diameter δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} if and only if it is of constant width δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. We also show this equivalence for all convex bodies on S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^2$$\end{document}. Since, as shown earlier, the equivalence on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} is true for every δ≥π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta \ge \frac{\pi }{2}$$\end{document}, the question whether spherical bodies of constant diameter and constant width on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document} coincide remains open for non-smooth bodies on Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}, where d≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}.
引用
收藏
页码:393 / 400
页数:7
相关论文
共 6 条
[1]  
Han H(2017)Self-dual Wulff shapes and spherical convex bodies of constant width J. Math. Soc. Jpn. 69 1475-1484
[2]  
Nishimura T(2015)Width of spherical convex bodies Aequ. Math. 89 555-567
[3]  
Lassak M(2018)Spherical bodies of constant width Aequ. Math. 92 627-640
[4]  
Lassak M(2014)On the works of Euler and his followers on spherical geometry Ganita Bharati 36 53-108
[5]  
Musielak M(undefined)undefined undefined undefined undefined-undefined
[6]  
Papadopoulos A(undefined)undefined undefined undefined undefined-undefined