On Invariant Subspace In Quantum Control Systems and Some Concepts of Integrable Quantum Systems

被引:0
作者
Andrzej Jamiołkowski
Takeo Kamizawa
Grzegorz Pastuszak
机构
[1] Nicolaus Copernicus University,Faculty of Physics, Astronomy and Informatics
[2] Center for Theoretical Physics of the Polish Academy of Sciences,undefined
来源
International Journal of Theoretical Physics | 2015年 / 54卷
关键词
Integrable system; Quasi-diagonalisation; Morris-shore transformation; Circulant matrices; Brownian matrices;
D O I
暂无
中图分类号
学科分类号
摘要
Trajectories of some dynamical systems can be analysed by algebraic methods. In this paper we discuss certain applications of the so-called Shemesh criterion and its generalisations to analysis of properties of quantum control systems. In particular, some Hamiltonians with non-degenerated spectrum are considered, and also the case of a Hamiltonian with m1,...,mN degeneracies, where ∑i=1Nmi=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\sum }^{N}_{i=1}m_{i}=n$\end{document}, is discussed.
引用
收藏
页码:2662 / 2674
页数:12
相关论文
共 15 条
  • [1] Vojta H(2003)undefined Rep. Prog.Phys. 66 2069-18
  • [2] Shemesh D(1984)undefined Lin. Alg. Appl. 62 11-100
  • [3] Barker GP(1978)undefined Lin. Alg. and Appl. 20 95-341
  • [4] Eifler LQ(1950)undefined Proc. AMS 1 334-463
  • [5] Kezlan TP(1950)undefined Proc. AMS 1 449-103
  • [6] Levitzki JA(2000)undefined Program. Comput. Softw. 26 100-137
  • [7] Amitsur SA(1979)undefined Lin. Alg. and Appl. 25 129-102
  • [8] Levitzki JA(1983)undefined Phys. Rev. A 27 906-undefined
  • [9] Ikramov KD(2009)undefined Phys. Review A. 80 022329-undefined
  • [10] Saveleva NV(1988)undefined Lin. Alg. and Appl. 103 87-undefined