Pseudodifferential Operators Associated with a Semigroup of Operators

被引:0
作者
Frédéric Bernicot
Dorothee Frey
机构
[1] CNRS,Laboratoire Jean Leray
[2] Université de Nantes,Mathematical Sciences Institute
[3] Australian National University,undefined
来源
Journal of Fourier Analysis and Applications | 2014年 / 20卷
关键词
Pseudodifferential operators; Metric measure space; Heat semigroup; 35S05; 38B10;
D O I
暂无
中图分类号
学科分类号
摘要
Related to a semigroup of operators on a metric measure space, we define and study pseudodifferential operators (including the setting of Riemannian manifolds, fractals, graphs etc.). Boundedness on Lp for pseudodifferential operators of order 0 is proved. We mainly focus on symbols belonging to the class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{0}_{1,\delta}$\end{document} for δ∈[0,1). For the limit class \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{0}_{1,1}$\end{document}, we describe some results by restricting our attention to the case of a sub-Laplacian operator on a Riemannian manifold.
引用
收藏
页码:91 / 118
页数:27
相关论文
共 60 条
[1]  
Auscher P.(2007)On necessary and sufficient conditions for Mem. Am. Math. Soc. 186 911-957
[2]  
Auscher P.(2004) estimates of Riesz transforms associated to elliptic operators on Ann. Sci. Éc. Norm. Super. 37 265-316
[3]  
Coulhon T.(2007) and related estimates J. Evol. Equ. 7 192-248
[4]  
Duong X.T.(2008)Riesz transform on manifolds and heat kernel regularity J. Geom. Anal. 18 37-45
[5]  
Hofmann S.(1994)Weighted norm inequalities, off-diagonal estimates and elliptic operators II: Off-diagonal estimates on spaces of homogeneous type Math. Res. Lett. 1 509-544
[6]  
Auscher P.(2012)Hardy spaces of differential forms on Riemannian manifolds J. Anal. Math. 118 485-519
[7]  
Martell J.M.(2006)Noyau de la chaleur d’opérateurs elliptiques complexes J. Math. Soc. Jpn. 58 1642-1677
[8]  
Auscher P.(2005)Algebra properties for Sobolev spaces—applications to semilinear PDE’s on manifolds Commun. Pure Appl. Math. 58 745-748
[9]  
McIntosh A.(2008)Stability of parabolic Harnack inequalities on metric measure spaces C. R. Acad. Sci. Paris 346 1761-1796
[10]  
Russ E.(2008)Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs J. Funct. Anal. 255 6071-6108