Convergence analysis of a proximal Gauss-Newton method

被引:0
|
作者
Saverio Salzo
Silvia Villa
机构
[1] Università di Genova,DISI
[2] Università di Genova,DIMA
来源
Computational Optimization and Applications | 2012年 / 53卷
关键词
Gauss-Newton method; Penalized nonlinear least squares; Proximity operator; Lipschitz conditions with ; average;
D O I
暂无
中图分类号
学科分类号
摘要
An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of the method is assessed on some significant test problems.
引用
收藏
页码:557 / 589
页数:32
相关论文
共 50 条
  • [31] A Gauss-Newton Method for the Integration of Spatial Normal Fields in Shape Space
    Balzer, Jonathan
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (01) : 65 - 79
  • [32] The Gauss-Newton method for finding singular solutions to systems of nonlinear equations
    Yerina M.Yu.
    Izmailov A.F.
    Computational Mathematics and Mathematical Physics, 2007, 47 (5) : 748 - 759
  • [33] An Efficient Implementation of the Gauss-Newton Method Via Generalized Krylov Subspaces
    Buccini, A.
    de Alba, P. Diaz
    Pes, F.
    Reichel, L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [34] An Iterative Algorithm for Microwave Tomography Using Modified Gauss-Newton Method
    Kundu, A. K.
    Bandyopadhyay, B.
    Sanyal, S.
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 511 - +
  • [35] A Penalty Method Based on a Gauss-Newton Scheme for AC-OPF
    Mezghani, Ilyes
    Papavasiliou, Anthony
    Quoc Tran-Dinh
    Necoara, Ion
    2021 IEEE MADRID POWERTECH, 2021,
  • [36] The path planning of space manipulator based on Gauss-Newton iteration method
    Xie, Yaen
    Wu, Xiande
    Shi, Zhen
    Wang, Zhipeng
    Sun, Jun
    Hao, Tianwei
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (08) : 1 - 12
  • [37] FREQUENCY DOMAIN ELASTIC WAVEFORM INVERSION USING THE GAUSS-NEWTON METHOD
    Chung, Wookeen
    Shin, Jungkyun
    Bae, Ho Seuk
    Yang, Dongwoo
    Shin, Changsoo
    JOURNAL OF SEISMIC EXPLORATION, 2012, 21 (01): : 29 - 48
  • [38] ON A DYNAMIC VARIANT OF THE ITERATIVELY REGULARIZED GAUSS-NEWTON METHOD WITH SEQUENTIAL DATA
    Chada, Neil K.
    Iglesias, Marco
    Lu, Shuai
    Werner, Frank
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (06) : A3020 - A3046
  • [39] A Gauss-Newton Method for the Integration of Spatial Normal Fields in Shape Space
    Jonathan Balzer
    Journal of Mathematical Imaging and Vision, 2012, 44 : 65 - 79
  • [40] On the Gauss-Newton method for l1 orthogonal distance regression
    Watson, GA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 345 - 357