Convergence analysis of a proximal Gauss-Newton method

被引:0
|
作者
Saverio Salzo
Silvia Villa
机构
[1] Università di Genova,DISI
[2] Università di Genova,DIMA
来源
Computational Optimization and Applications | 2012年 / 53卷
关键词
Gauss-Newton method; Penalized nonlinear least squares; Proximity operator; Lipschitz conditions with ; average;
D O I
暂无
中图分类号
学科分类号
摘要
An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of the method is assessed on some significant test problems.
引用
收藏
页码:557 / 589
页数:32
相关论文
共 50 条
  • [1] Convergence analysis of a proximal Gauss-Newton method
    Salzo, Saverio
    Villa, Silvia
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 557 - 589
  • [2] Local convergence analysis of the Gauss-Newton method under a majorant condition
    Ferreira, O. P.
    Goncalves, M. L. N.
    Oliveira, P. R.
    JOURNAL OF COMPLEXITY, 2011, 27 (01) : 111 - 125
  • [3] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [4] On the Gauss-Newton method
    Argyros I.K.
    Hilout S.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 537 - 550
  • [5] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [6] ON THE CONVERGENCE OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING SINGULAR EQUATIONS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [7] ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION USING RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [8] The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem
    Ma, Changfeng
    Jiang, Lihua
    Wang, Desheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2072 - 2087
  • [9] LOCAL CONVERGENCE ANALYSIS OF INEXACT GAUSS-NEWTON METHOD FOR SINGULAR SYSTEMS OF EQUATIONS UNDER RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [10] Convergence analysis of the Gauss-Newton method for convex inclusion and convex-composite optimization problems
    Li, C.
    Ng, K. F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 469 - 485