QLEDs for displays and solid-state lighting

被引:188
作者
Supran, Geoffrey J. [1 ]
Shirasaki, Yasuhiro [1 ]
Song, Katherine W. [1 ]
Caruge, Jean-Michel
Kazlas, Peter T.
Coe-Sullivan, Seth
Andrew, Trisha L. [2 ]
Bawendi, Moungi G. [1 ]
Bulovic, Vladimir [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
关键词
COLLOIDAL QUANTUM DOTS; NEAR-INFRARED POLYMER; EMITTING-DIODES; CDSE NANOCRYSTALS; SEMICONDUCTING POLYMER; CHARGE INJECTION; ENERGY-TRANSFER; ORGANIC-DEVICE; ELECTROLUMINESCENCE; BRIGHT;
D O I
10.1557/mrs.2013.181
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The mainstream commercialization of colloidal quantum dots (QDs) for light-emitting applications has begun: Sony televisions emitting QD-enhanced colors are now on sale. The bright and uniquely size-tunable colors of solution-processable semiconducting QDs highlight the potential of electroluminescent QD light-emitting devices (QLEDs) for use in energy-efficient, high-color-quality thin-film display and solid-state lighting applications. Indeed, this year's report of record-efficiency electrically driven QLEDs rivaling the most efficient molecular organic LEDs, together with the emergence of full-color QLED displays, foreshadow QD technologies that will transcend the optically excited QD-enhanced products already available. In this article, we discuss the key advantages of using QDs as luminophores in LEDs and outline the 19-year evolution of four types of QLEDs that have seen efficiencies rise from less than 0.01% to 18%. With an emphasis on the latest advances, we identify the key scientific and technological challenges facing the commercialization of QLEDs. A quantitative analysis, based on published small-scale synthetic procedures, allows us to estimate the material costs of QDs typical in light-emitting applications when produced in large quantities and to assess their commercial viability.
引用
收藏
页码:703 / 711
页数:9
相关论文
共 102 条
[1]   Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well [J].
Achermann, M ;
Petruska, MA ;
Kos, S ;
Smith, DL ;
Koleske, DD ;
Klimov, VI .
NATURE, 2004, 429 (6992) :642-646
[2]   Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion [J].
Achermann, Marc ;
Petruska, Melissa A. ;
Koleske, Daniel D. ;
Crawford, Mary H. ;
Klimov, Victor I. .
NANO LETTERS, 2006, 6 (07) :1396-1400
[3]   Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots [J].
Anikeeva, P. O. ;
Madigan, C. F. ;
Halpert, J. E. ;
Bawendi, M. G. ;
Bulovic, V. .
PHYSICAL REVIEW B, 2008, 78 (08)
[4]   Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2007, 7 (08) :2196-2200
[5]   Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2009, 9 (07) :2532-2536
[6]  
[Anonymous], 2003, [No title captured], Patent No. 20030235712
[7]   Multicolored Light-Emitting Diodes Based on All-Quantum-Dot Multilayer Films Using Layer-by-Layer Assembly Method [J].
Bae, Wan Ki ;
Kwak, Jeonghun ;
Lim, Jaehoon ;
Lee, Donggu ;
Nam, Min Ki ;
Char, Kookheon ;
Lee, Changhee ;
Lee, Seonghoon .
NANO LETTERS, 2010, 10 (07) :2368-2373
[8]   Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer [J].
Bakueva, L ;
Musikhin, S ;
Hines, MA ;
Chang, TWF ;
Tzolov, M ;
Scholes, GD ;
Sargent, EH .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2895-2897
[9]   Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device [J].
Bourdakos, K. N. ;
Dissanayake, D. M. N. M. ;
Lutz, T. ;
Silva, S. R. P. ;
Curry, R. J. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[10]   Quantum dots go on display [J].
Bourzac, Katherine .
NATURE, 2013, 493 (7432) :283-283