Mirror Entanglement Measure of Multipartite Quantum States with Respect to k-partitions

被引:0
|
作者
Yinzhu Wang
Yaxue Liu
Fangyu Zhou
Lili Yang
Donghua Yan
机构
[1] Taiyuan University of Science and Technology,School of Applied Science
来源
International Journal of Theoretical Physics | 2021年 / 60卷
关键词
Multipartite quantum system; Quantum states; -separability; Mirror Entanglement measure; Entanglement monotone;
D O I
暂无
中图分类号
学科分类号
摘要
In Monras et al. (Phys. Rev. A, 2011, 84(1):012301 2011), the authors presented an entanglement measure for bipartite pure states based on local unitary operations. In this paper, motivated by this idea, we obtained an entanglement measure for multipartite quantum states with respect to k-partitions, which is called mirror entanglement measure for multipartite k-nonseparable states, it is simply denoted by k-MEM. We show that this measure is well-defined, i.e., it satisfies some necessary conditions of entanglement measure including vanishes iff the multipartite quantum states are k-separable, invariance under local unitary operation and monotonicity under local quantum operation and classical communication.
引用
收藏
页码:4037 / 4043
页数:6
相关论文
共 50 条
  • [1] Mirror Entanglement Measure of Multipartite Quantum States with Respect to k-partitions
    Wang, Yinzhu
    Liu, Yaxue
    Zhou, Fangyu
    Yang, Lili
    Yan, Donghua
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (11-12) : 4037 - 4043
  • [2] Entanglement measure for general pure multipartite quantum states
    Heydari, H
    Björk, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (39): : 9251 - 9260
  • [3] Accurate calculation of the geometric measure of entanglement for multipartite quantum states
    Peiyuan Teng
    Quantum Information Processing, 2017, 16
  • [4] Accurate calculation of the geometric measure of entanglement for multipartite quantum states
    Teng, Peiyuan
    QUANTUM INFORMATION PROCESSING, 2017, 16 (07)
  • [5] Geometric measure of entanglement and applications to bipartite and multipartite quantum states
    Wei, TC
    Goldbart, PM
    PHYSICAL REVIEW A, 2003, 68 (04):
  • [6] Groverian entanglement measure of pure quantum states with arbitrary partitions
    Shimoni, Yishai
    Biham, Ofer
    PHYSICAL REVIEW A, 2007, 75 (02)
  • [7] Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure
    Sadhukhan, Debasis
    Roy, Sudipto Singha
    Pal, Amit Kumar
    Rakshit, Debraj
    Sen , Aditi
    Sen, Ujjwal
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [8] Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
    Wang, Yinzhu
    Liu, Tianwen
    Ma, Ruifen
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (03) : 983 - 990
  • [9] Schmidt Number Entanglement Measure for Multipartite k-nonseparable States
    Yinzhu Wang
    Tianwen Liu
    Ruifen Ma
    International Journal of Theoretical Physics, 2020, 59 : 983 - 990
  • [10] QUANTUM ENTANGLEMENT AND MULTIPARTITE SYMMETRIC STATES
    Chruscinski, Dariusz
    QUANTUM BIO-INFORMATICS III: FROM QUANTUM INFORMATION TO BIO-INFORMATICS, 2010, 26 : 59 - 79