The edge fault-tolerant spanning laceability of the enhanced hypercube networks

被引:0
作者
Hongwei Qiao
Jixiang Meng
Eminjan Sabir
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
The Journal of Supercomputing | 2023年 / 79卷
关键词
Enhanced hypercubes; Fault tolerance; Hamiltonian laceable; Hamiltonian; Spanning laceability;
D O I
暂无
中图分类号
学科分类号
摘要
In the design of an interconnection network, one of the most fundamental considerations is the reliability of the network, which can be usually characterized by the fault tolerance of the network. Embedding paths into a network topology is crucial for the network simulation. This paper investigates the problem of embedding spanning disjoint paths in the enhanced hypercube networks with edge fault tolerance. A k-container C(u, v) of a graph G is a set of k-disjoint paths joining u to v. A k-container of G is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container if it contains all the vertices of G. A bipartite graph H with bipartition V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{0}$$\end{document} and V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if for any u∈V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V_{0}$$\end{document} and v∈V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_{1}$$\end{document} there is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container between u and v. A bipartite graph H is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if H-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-F$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for any edge set F of H with |F|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F|\le f$$\end{document}. It is shown that the n-dimensional bipartite enhanced hypercube network Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document} is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for every f≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le n-1$$\end{document} and f+k≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f+k\le n+1$$\end{document}. Moreover, the result is optimal with respect to the degree of Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document}, and some experimental examples are provided to verify the theoretical result.
引用
收藏
页码:6070 / 6086
页数:16
相关论文
共 50 条
  • [41] Fault-tolerant hamiltonicity and fault-tolerant hamiltonian connectivity of the folded Petersen cube networks
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (01) : 57 - 66
  • [42] Fault-Tolerant Mechanism for Edge-Based IoT Networks With Demand Uncertainty
    Samanta, Amit
    Esposito, Flavio
    Tri Gia Nguyen
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (23) : 16963 - 16971
  • [43] Fault-tolerant broadcasting in radio networks
    Kranakis, E
    Krizanc, D
    Pelc, A
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 39 (01): : 47 - 67
  • [44] Fault-Tolerant Aggregation for Dynamic Networks
    Jesus, Paulo
    Baquero, Carlos
    Almeida, Paulo Sergio
    2010 29TH IEEE INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS SRDS 2010, 2010, : 37 - 43
  • [45] FAULT-TOLERANT DISTRIBUTED SUBCUBE MANAGEMENT SCHEME FOR HYPERCUBE MULTICOMPUTER SYSTEMS
    CHEN, YL
    LIU, JC
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1995, 6 (07) : 766 - 772
  • [46] The balanced hypercube: A cube-based system for fault-tolerant applications
    Wu, J
    Huang, K
    IEEE TRANSACTIONS ON COMPUTERS, 1997, 46 (04) : 484 - 490
  • [47] Fault-Tolerant Hamiltonian Connectivity and Fault-Tolerant Hamiltonicity of the Fully Connected Cubic Networks
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2009, 25 (06) : 1855 - 1862
  • [48] Fault-tolerant networks for electronic textiles
    Nakad, Z
    Jones, M
    Martin, T
    CIC '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN COMPUTING, 2004, : 100 - 106
  • [49] Evolving fault-tolerant neural networks
    Zhou, ZH
    Chen, SF
    NEURAL COMPUTING & APPLICATIONS, 2003, 11 (3-4) : 156 - 160
  • [50] Fault-Tolerant General Benes Networks
    Lin, Bey-Chi
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (12) : 6928 - 6938