The edge fault-tolerant spanning laceability of the enhanced hypercube networks

被引:0
作者
Hongwei Qiao
Jixiang Meng
Eminjan Sabir
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
The Journal of Supercomputing | 2023年 / 79卷
关键词
Enhanced hypercubes; Fault tolerance; Hamiltonian laceable; Hamiltonian; Spanning laceability;
D O I
暂无
中图分类号
学科分类号
摘要
In the design of an interconnection network, one of the most fundamental considerations is the reliability of the network, which can be usually characterized by the fault tolerance of the network. Embedding paths into a network topology is crucial for the network simulation. This paper investigates the problem of embedding spanning disjoint paths in the enhanced hypercube networks with edge fault tolerance. A k-container C(u, v) of a graph G is a set of k-disjoint paths joining u to v. A k-container of G is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container if it contains all the vertices of G. A bipartite graph H with bipartition V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{0}$$\end{document} and V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if for any u∈V0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V_{0}$$\end{document} and v∈V1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V_{1}$$\end{document} there is a k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-container between u and v. A bipartite graph H is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable if H-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H-F$$\end{document} is k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for any edge set F of H with |F|≤f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|F|\le f$$\end{document}. It is shown that the n-dimensional bipartite enhanced hypercube network Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document} is f-edge fault-tolerant k∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{*}$$\end{document}-laceable for every f≤n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\le n-1$$\end{document} and f+k≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f+k\le n+1$$\end{document}. Moreover, the result is optimal with respect to the degree of Qn,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{n,m}$$\end{document}, and some experimental examples are provided to verify the theoretical result.
引用
收藏
页码:6070 / 6086
页数:16
相关论文
共 50 条
  • [1] The edge fault-tolerant spanning laceability of the enhanced hypercube networks
    Qiao, Hongwei
    Meng, Jixiang
    Sabir, Eminjan
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (06) : 6070 - 6086
  • [2] FAULT-TOLERANT HAMILTONIAN LACEABILITY AND FAULT-TOLERANT CONDITIONAL HAMILTONIAN FOR BIPARTITE HYPERCUBE-LIKE NETWORKS
    Lin, Cheng-Kuan
    Ho, Tung-Yang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 243 - 251
  • [3] Fault tolerance of hypercube like networks: Spanning laceability under edge faults
    Xu, Min
    Naik, Kshirasagar
    Thulasiraman, Krishnaiyan
    THEORETICAL COMPUTER SCIENCE, 2020, 835 (835) : 44 - 57
  • [4] On the spanning connectivity and spanning laceability of hypercube-like networks
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, D. Frank
    Hsu, Lih-Hsing
    THEORETICAL COMPUTER SCIENCE, 2007, 381 (1-3) : 218 - 229
  • [5] The spanning laceability on the faulty bipartite hypercube-like networks
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    Marusic, Dragan
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8095 - 8103
  • [6] Fault-tolerant hamiltonian laceability of hypercubes
    Tsai, CH
    Tan, JJM
    Liang, TN
    Hsu, LH
    INFORMATION PROCESSING LETTERS, 2002, 83 (06) : 301 - 306
  • [7] Edge Fault-Tolerant Strong Hamiltonian Laceability of Balanced Hypercubes
    Gu, Mei-Mei
    Hao, Rong-Xia
    Feng, Yan-Quan
    JOURNAL OF INTERCONNECTION NETWORKS, 2016, 16 (02)
  • [8] Fault-tolerant wormhole routing for hypercube networks
    Shih, JD
    INFORMATION PROCESSING LETTERS, 2003, 86 (02) : 93 - 100
  • [9] Fault-tolerant Hamiltonian laceability of balanced hypercubes
    Zhou, Qingguo
    Chen, Dan
    Lu, Huazhong
    INFORMATION SCIENCES, 2015, 300 : 20 - 27
  • [10] Fault-tolerant cycle embedding in the hypercube
    Fu, JS
    PARALLEL COMPUTING, 2003, 29 (06) : 821 - 832