Stability of isoperimetric type inequalities for some Monge–Ampère functionals

被引:0
作者
Daria Ghilli
Paolo Salani
机构
[1] “U. Dini”,Dipartimento di Matematica
来源
Annali di Matematica Pura ed Applicata | 2014年 / 193卷
关键词
Monge–Ampère; Stability; Urysohn inequality ; Brunn–Minkowski inequality; Convex functions; Infimal convolution; 52A40; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the stability of some inequalities of isoperimetric type related to Monge–Ampère functionals. In particular, firstly we prove the stability of a reverse Faber–Krahn inequality for the Monge–Ampère eigenvalue and its generalization. Then we give a stability result for the Brunn–Minkowski inequality and for a consequent Urysohn’s type inequality for the so-called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-torsional rigidity, a natural extension of the usual torsional rigidity.
引用
收藏
页码:643 / 661
页数:18
相关论文
共 25 条
[1]  
Bianchini C.(2010)Concavity properties for elliptic free boundary problems Nonlinear Anal. 72 4461-4470
[2]  
Salani P.(2010)Stability of the Blaschke–Santalò and the affine isoperimetric inequality Adv. Math. 225 1914-1928
[3]  
Böröczky KJ(2009)New isoperimetric estimates for solutions to Monge–Ampère equations Ann. Inst. H. Poincaré Anal. Non Linéaire 26 1265-1275
[4]  
Brandolini B(1984)The Dirichlet problem for nonlinear second-order elliptic equations I. Monge–Ampère equation Commun. Pure Appl. Math. 37 369-402
[5]  
Nitsch C(2001)A variational theory of the Hessian equations Commun. Pure Appl. Math. 54 1029-1064
[6]  
Trombetti C(2005)Brunn-Minkowki inequalities for variational functionals and related problems Adv. Math. 194 105-140
[7]  
Caffarelli L(2003)The Brunn–Minkowski inequality for Math. Ann. 327 459-479
[8]  
Nirenberg L(2009)-capacity of convex bodies Ann. I. H. Poincaré 26 2511-2519
[9]  
Spruck J(2002)A refined Brunn–Minkowski inequality for convex sets Bull. Amer. Math. Soc. 39 355-405
[10]  
Chou K-S(1988)The Brunn–Minkowski inequality Geom. Dedicata 27 357-371