Some new Hardy-type inequalities for Riemann-Liouville fractional q-integral operator

被引:0
作者
Lars-Erik Persson
Serikbol Shaimardan
机构
[1] Luleå University of Technology,
[2] Narvik University College,undefined
[3] L.N. Gumilyov Eurasian National University,undefined
来源
Journal of Inequalities and Applications | / 2015卷
关键词
inequalities; Hardy-type inequalities; Riemann-Liouville operator; integral operator; -calculus; -integral; 26D10; 26D15; 33D05; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the q-analog of the Riemann-Liouville fractional q-integral operator of order n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\in N$\end{document}. Some new Hardy-type inequalities for this operator are proved and discussed.
引用
收藏
相关论文
共 24 条
  • [1] Jackson FH(1910)On Q. J. Pure Appl. Math. 41 193-203
  • [2] Bangerezako G(2005)-definite integrals J. Math. Anal. Appl. 306 161-179
  • [3] Gauchman H(2004)Variational calculus on Comput. Math. Appl. 47 281-300
  • [4] Krasniqi V(2011)-nonuniform lattices J. Math. Inequal. 5 451-121
  • [5] Miao Y(2009)Integral inequalities in J. Math. Inequal. 3 115-80
  • [6] Qi F(2011)-calculus Adv. Pure Math. 1 77-682
  • [7] Sulaiman WT(2014)Erratum: Several Czechoslov. Math. J. 64 659-317
  • [8] Maligranda L(1920)-integral inequalities Math. Z. 6 314-156
  • [9] Oinarov R(1925)Several Messenger Math. 54 150-570
  • [10] Persson L-E(2008)-integral inequalities J. Math. Inequal. 2 555-9