One-dimensional Discrete Dirac Operators in a Decaying Random Potential I: Spectrum and Dynamics

被引:0
作者
Olivier Bourget
Gregorio R. Moreno Flores
Amal Taarabt
机构
[1] Pontificia Universidad Católica de Chile,Facultad de Matemáticas
来源
Mathematical Physics, Analysis and Geometry | 2020年 / 23卷
关键词
Dirac model; Decaying disordered; Phase transition; Dynamical localization; 82B44; 47B80;
D O I
暂无
中图分类号
学科分类号
摘要
We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type n−α for α > 0. We recover all the spectral regimes previously obtained for the analogue Anderson model in a random decaying potential, namely: absolutely continuous spectrum in the super-critical region α>12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha >\frac 12$\end{document}; a transition from pure point to singular continuous spectrum in the critical region α=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =\frac 12$\end{document}; and pure point spectrum in the sub-critical region α<12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha <\frac 12$\end{document}. From the dynamical point of view, delocalization in the super-critical region follows from the RAGE theorem. In the critical region, we exhibit a simple argument based on lower bounds on eigenfunctions showing that no dynamical localization can occur even in the presence of point spectrum. Finally, we show dynamical localization in the sub-critical region by means of the fractional moments method and provide control on the eigenfunctions.
引用
收藏
相关论文
共 149 条
[1]  
Andrei EY(2009)Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene Nature 462 192-5
[2]  
Du X(1993)Localization at large disorder and at extreme energies: an elementary derivation Comm. Math. Phy. 157 245-278
[3]  
Duerr F(2006)stability of the absolutely continuous spectrum of random schrödinger operators on tree graphs, Probab Theory Rel. Fields 136 363-394
[4]  
Lucian A(1967)Weighted sums of certain dependent random variables Tô,hoku Math. J. 19 357-367
[5]  
Skachko I(2013)Artificial graphene with tunable interactions Phys. Rev. Lett. 111 185307-15
[6]  
Aizenman M(2002)On random schrödinger operators on $\mathbb {Z}^{2}$ℤ2 Discret Contin. Dyn. Syst. 8 1-1127
[7]  
Molchanov S(2018)The Kunz-Souillard approach to localization for jacobi operators Oper. Matrices. 12 1099-3667
[8]  
Aizenman M(2019)Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent Trans. Amer. Math. Soc. 372 3619-9
[9]  
Sims R(2009)Observation of the fractional quantum Hall effect in graphene Nature 462 196-3291
[10]  
Warzel S(1994)Localization of relativistic electrons in a One-Dimensional disordered system J. Phys. A 27 3285-5