Magnetic Neumann Laplacian on a sharp cone

被引:0
|
作者
V. Bonnaillie-Noël
N. Raymond
机构
[1] Univ. Rennes 1,IRMAR, ENS Rennes, CNRS, UEB
[2] Univ. Rennes 1,IRMAR, CNRS
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
35P15; 35J10; 81Q10; 81Q15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit α→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \rightarrow 0$$\end{document} and establish a full asymptotic expansion for the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-th eigenvalue and the n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-th eigenfunction.
引用
收藏
页码:125 / 147
页数:22
相关论文
共 50 条