Hilbert Problem for the Cauchy–Riemann Equation with a Singular Circle and a Singular Point

被引:0
|
作者
Rasulov A.B. [1 ]
Bobodzhanova M.A. [1 ]
Fedorov Y.S. [1 ]
机构
[1] National Research University “Moscow Power Engineering Institute,”, Moscow
关键词
35F15; generalized Cauchy–Riemann-type system; Hilbert problem; singular integral equation;
D O I
10.1007/s10958-019-04427-2
中图分类号
学科分类号
摘要
We examine a generalized Cauchy–Riemann-type system whose coefficients have singularities, construct the resolvent of the corresponding integral equation, and find an integral representation of the general solution. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:327 / 339
页数:12
相关论文
共 50 条
  • [41] Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions
    Yang, Jin-Jie
    Tian, Shou-Fu
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 205 (03) : 1611 - 1637
  • [42] On the Solvability of Singular Integral Equations with Reflection on the Unit Circle
    Castro, L. P.
    Rojas, E. M.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 70 (01) : 63 - 99
  • [43] On the Solvability of Singular Integral Equations with Reflection on the Unit Circle
    L. P. Castro
    E. M. Rojas
    Integral Equations and Operator Theory, 2011, 70 : 63 - 99
  • [44] Solution of a logarithmic singular integral equation
    Chakrabarti, A
    Manam, SR
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 369 - 373
  • [45] Solutions of some singular integral equation
    Terbeche, M
    Sacaliuc, C
    Vornicescu, G
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (05): : 379 - 387
  • [46] Bitsadze-Samarskii problem with a lacking shift condition for the Gellerstedt equation with a singular coefficient
    Gulbakhor M. Mirsaburova
    Differential Equations, 2014, 50 : 655 - 666
  • [47] Bitsadze-Samarskii problem with a lacking shift condition for the Gellerstedt equation with a singular coefficient
    Mirsaburova, Gulbakhor M.
    DIFFERENTIAL EQUATIONS, 2014, 50 (05) : 655 - 666
  • [48] The problem with the missing Goursat condition at the boundary of the domain for a degenerate hyperbolic equation with a singular coefficient
    Mirsaburov, M.
    Berdyshev, A. S.
    Ergasheva, S. B.
    Makulbay, A. B.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 114 (02): : 147 - 164
  • [49] A survey for numerical method for singular integral equation
    Kim, P
    Choi, UJ
    DIFFERENTIAL EQUATIONS AND APPLICATIONS, VOL 2, 2002, : 81 - 108
  • [50] One multidimensional weakly singular integral equation
    Yu. R. Agachev
    R. K. Gubaidullina
    Russian Mathematics, 2007, 51 (4) : 1 - 7