A novel measure and significance testing in data analysis of cell image segmentation

被引:0
作者
Jin Chu Wu
Michael Halter
Raghu N. Kacker
John T. Elliott
Anne L. Plant
机构
[1] National Institute of Standards and Technology,
来源
BMC Bioinformatics | / 18卷
关键词
Cell image segmentation; Cell assays; Performance measure; Misclassification error rate; Total error rate; Standard error; Confidence interval; Correlation coefficient; Significance testing; Bootstrap method;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 60 条
[1]  
Hill AA(2007)Impact of image segmentation on high-content screening data quality for SK-BR-3 cells BMC Bioinf. 8 340-52
[2]  
LaPan P(2013)Segmenting time-lapse phase contrast images of adjacent NIH 3 T3 cells J Microsc 249 41-50
[3]  
Li Y(2015)Survey statistics of automated segmentations applied to optical imaging of mammalian cells BMC Bioinf. 16 330-44
[4]  
Haney S(1971)Objective criteria for the evaluation of clustering methods J Am Stat Assoc 66 846-24
[5]  
Chalfoun J(2007)Toward objective evaluation of image segmentation algorithms IEEE Trans Pattern Anal Mach Intell 29 929-74
[6]  
Kociolek M(1994)Morphometric analysis of white matter lesions in MR images: method and validation IEEE Trans Med Imag 13 716-78
[7]  
Dima A(1997)Evaluation and comparison of different segmentation algorithms Pattern Recognit Lett 18 963-51
[8]  
Cardone A(2002)An exact bootstrap confidence interval for κ in small samples Statistician 51 467-80
[9]  
Peskin A(2014)Accurate cell segmentation in microscopy images using membrane patterns Bioinformatics 30 2644-26
[10]  
Bajcsy P(2008)Image segmentation evaluation: a survey of unsupervised methods Comput. Vis. Image Underst. 110 260-37