Large-Time Behavior for Compressible Navier–Stokes–Fourier System in the Whole Space

被引:0
作者
Lingbing He
Jingchi Huang
Chao Wang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Sun Yat-sen University,School of Mathematics
[3] Peking University,School of Mathematical Sciences
来源
Journal of Mathematical Fluid Mechanics | 2022年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The current paper is devoted to the investigation of large-time behavior of the compressible Navier–Stokes–Fourier system in the whole space. Under the condition that ‖ρ‖Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \rho \Vert _{C^\alpha } $$\end{document} and ‖ρ,T‖L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \rho , T\Vert _{L^\infty }$$\end{document} possess uniform in time bound, we prove that the regular solutions converge to equilibrium with the optimal decay rate.
引用
收藏
相关论文
共 49 条
[11]  
Zhang Z(2019) framework for flows of compressible viscous and heat-conductive gases Arch. Ration. Mech. Anal. 234 1167-1222
[12]  
Danchin R(1995)Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain J. Differ. Equ. 120 215-254
[13]  
Danchin R(1997)Global stability of large solutions to the 3D compressible Navier–Stokes equations Arch. Rational Mech. Anal. 139 303-354
[14]  
Danchin R(2018)Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data Arch. Ration. Mech. Anal. 227 995-1059
[15]  
Danchin R(2002)Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids Arch. Ration. Mech. Anal. 165 89-159
[16]  
Danchin R(2005)Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations Arch. Ration. Mech. Anal. 177 231-330
[17]  
Xu J(2002)On large time behavior of solutions to the compressible Navier–Stokes equations in the half space in J. Differ. Equ. 184 587-619
[18]  
Fang D(1999)Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space Commun. Math. Phys. 200 621-659
[19]  
Zhang T(1979)Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in Proc. Jpn. Acad. Ser. A Math. Sci. 55 337-342
[20]  
Zi R(1980)Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of J. Math. Kyoto Univ. 20 67-104