Large-Time Behavior for Compressible Navier–Stokes–Fourier System in the Whole Space

被引:0
作者
Lingbing He
Jingchi Huang
Chao Wang
机构
[1] Tsinghua University,Department of Mathematical Sciences
[2] Sun Yat-sen University,School of Mathematics
[3] Peking University,School of Mathematical Sciences
来源
Journal of Mathematical Fluid Mechanics | 2022年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The current paper is devoted to the investigation of large-time behavior of the compressible Navier–Stokes–Fourier system in the whole space. Under the condition that ‖ρ‖Cα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \rho \Vert _{C^\alpha } $$\end{document} and ‖ρ,T‖L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \rho , T\Vert _{L^\infty }$$\end{document} possess uniform in time bound, we prove that the regular solutions converge to equilibrium with the optimal decay rate.
引用
收藏
相关论文
共 49 条
[1]  
Charve F(2010)A global existence result for the compressible Navier–Stokes equations in the critical Arch. Ration. Mech. Anal. 198 233-271
[2]  
Danchin R(2010) framework Commun. Pure Appl. Math. 63 1173-1224
[3]  
Chen Q(2010)Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity Rev. Mat. Iberoam. 26 915-946
[4]  
Miao C(2015)Well-posedness in critical spaces for the compressible Navier–Stokes equations with density dependent viscosities Rev. Mat. Iberoam. 31 1375-1402
[5]  
Zhang Z(2000)On the ill-posedness of the compressible Navier–Stokes equation in the critical Besov spaces Invent. Math. 141 579-614
[6]  
Chen Q(2001)Global existence in critical spaces for compressible Navier–Stokes equations Commun. Partial Differ. Equ. 26 1183-1233
[7]  
Miao C(2001)Local theory in critical spaces for compressible viscous and heat-conductive gases Arch. Ration. Mech. Anal. 160 1-39
[8]  
Zhang Z(2005)Global existence in critical spaces for flows of compressible viscous and heat-conductive gases Nonlinear Differ. Equ. Appl. 12 111-128
[9]  
Chen Q(2017)On the uniqueness in critical spaces for compressible Navier–Stokes equations Arch. Ration. Mech. Anal. 224 53-90
[10]  
Miao C(2012)Optimal decay estimates in the critical J. Math. Anal. Appl. 386 939-947