Dynamic electrical properties of polymer-carbon nanotube composites: Enhancement through covalent bonding

被引:0
作者
Curran S.A. [1 ]
Zhang D. [1 ]
Wondmagegn W.T. [1 ]
Ellis A.V. [2 ]
Cech J. [3 ]
Roth S. [3 ]
Carroll D.L. [4 ]
机构
[1] New Mexico State University, Department of Physics, Las Cruces
[2] Gracefield Research Centre, Industrial Research Ltd.
[3] Max Planck Institute for Solid State Research
[4] Department of Physics, Wake Forest University, Winston-Salem
基金
美国国家科学基金会;
关键词
D O I
10.1557/jmr.2006.0129
中图分类号
学科分类号
摘要
Composite formation between carbon nanotubes and polymers can dramatically enhance the electrical and thermal properties of the combined materials. We have prepared a composite from polystyrene and multi-walled carbon nanotubes (MWCNT) and, unlike traditional techniques of composite formation, we chose to polymerize styrene from the surface of dithiocarboxylic ester-functionalized MWCNNs to fabricate a unique composite material, a new technique dubbed "gRAFT" polymerization. The thermal stability of the polymer matrix in the covalently linked MWCNT-polystyrene composite is significantly enhanced, as demonstrated by a 15 °C increase of the decomposition temperature than that of the noncovalently linked MWCNT-polystyrene blend. Thin films made from the composite with low MWCNT loadings (<0.9 wt%) are optically transparent, and we see no evidence of aggregation of nanotubes in the thin film or solution. The result from the conductivity measurement as a function of MWCNT loadings suggests two charge transport mechanisms: charge hopping in low MWCNT loadings (0.02-0.6 wt%) and ballistic quantum conduction in high loadings (0.6-0.9 wt%). The composite exhibits dramatically enhanced conductivity up to 33 S m-1 at a low MWCNT loading (0.9 wt%). © 2006 Materials Research Society.
引用
收藏
页码:1071 / 1077
页数:6
相关论文
共 52 条
  • [1] Iijima S., Helical microtubules of graphitic carbon, Nature, 354, (1991)
  • [2] Saito R., Dresselhaus G., Dresselhaus M.S., Physical Properties of Carbon Nanotubes, (1999)
  • [3] Dresselhaus M.S., Dresselhaus G., Charlier J.C., Hernandez E., Electronic, thermal and mechanical properties of carbon nanotubes, Philos. Trans. R. Soc. London, Ser. A, 362, (2004)
  • [4] Ouyang M., Huang J., Lieber C.M., Fundamental electronic properties and applications of single-walled carbon nanotubes, Acc. Chem. Res., 35, (2002)
  • [5] Ugawa A., Rinzler A.G., Tanner D.B., Far infrared gaps in single-wall carbon nanotubes, Phys. Rev. B, 60, (1999)
  • [6] Itkis M.E., Niyogi S., Meng M., Hamon M., Hu H., Haddon R.C., Spectroscopic study of the Fermi level electronic structure of single walled carbon nanotubes, Nano Lett., 2, (2002)
  • [7] Ouyang M., Huang J.-L., Cheung C.L., Lieber C.M., Energy gaps in "Metallic"Single-walled carbon nanotubes, Science, 292, (2001)
  • [8] Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.H., Kim S.G., Rinzler A.G., Colbert D.T., Scuseria G.E., Tomanek D., Fischer J.E., Smalley R.E., Crystalline ropes of metallic carbon nanotubes, Science, 273, (1996)
  • [9] Hone J., Llaguno M.C., Nemes N.M., Johnson A.T., Fischer J.E., Walters D.A., Casavant M.J., Schmidt J., Smalley R.E., Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films, Appl. Phys. Lett., 77, (2000)
  • [10] Langer L., Stockman L., Heremans J.P., Bayot V., Olk C.H., Haesendonck C., Bruynseraede Y., Issi J.-P., Electrical resistance of a carbon nanotube bundle, J. Mater. Res., 9, (1994)